

US009234045B2

(12) United States Patent

De Romeuf et al.

(10) Patent No.: US 9,234,045 B2

(45) **Date of Patent: Jan. 12, 2016**

(54) MONOCLONAL ANTIBODY DIRECTED AGAINST CD20 ANTIGEN

(75) Inventors: Christophe De Romeuf, Lambersart

(FR); Christine Gaucher, Sequedin (FR); Jean-Luc Teillaud, Paris (FR); Jean-François Prost, Versailles (FR)

(73) Assignee: LABORATOIRE FRANCAIS DU

FRACTIONNEMENT ET DES BIOTECHNOLOGIES, Les Ulis (FR)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 1322 days.

(21) Appl. No.: 11/793,138

(22) PCT Filed: Dec. 14, 2005

(86) PCT No.: **PCT/FR2005/003123**

§ 371 (c)(1),

(2), (4) Date: **Aug. 14, 2008**

(87) PCT Pub. No.: **WO2006/064121**

PCT Pub. Date: Jun. 22, 2006

(65) Prior Publication Data

US 2009/0053233 A1 Feb. 26, 2009

(30) Foreign Application Priority Data

Dec. 15, 2004 (FR) 04 13320

(51) Int. Cl. C07K 16/30

 C07K 16/30
 (2006.01)

 A61K 39/395
 (2006.01)

 C12N 5/12
 (2006.01)

 C07K 16/28
 (2006.01)

 A61K 51/10
 (2006.01)

 A61K 39/00
 (2006.01)

(52) U.S. Cl.

CPC C07K 16/2896 (2013.01); A61K 51/1069 (2013.01); C07K 16/2887 (2013.01); C07K 16/3061 (2013.01); A61K 2039/505 (2013.01); C07K 2317/24 (2013.01); C07K 2317/56 (2013.01); C12N 2510/02 (2013.01)

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0133939 A	.1 7/2003	Ledbetter et al.
2004/0110704 A	1 6/2004	Yamane et al.
2005/0249732 A	1 11/2005	de Romeuf et al.
2005/0271652 A	1 12/2005	de Romeuf et al.
2008/0241103 A	.1 10/2008	Qian

FOREIGN PATENT DOCUMENTS

WO	WO-98-41645 A	9/1998
WO	WO-0110460 A1	2/2001
WO	WO-02079255 A1	10/2002
WO	WO-03085107 A1	10/2003
WO	WO-2004024768 A2	3/2004
WO	WO-2004028564 A2	4/2004
WO	WO-2004029092 A2	4/2004
WO	WO-2004056312 A2	7/2004
WO	WO-2004/035607 A2	8/2004
WO	WO-2005/063815 A	7/2005
	OTHER PUB	LICATIONS

MacCallum et al. "Antibody-antigen interactions: contact analysis and binding site topography", Journal of Molecular Biology, 1996. vol. 262, pp. 732-745.*

De Pascalis et al. "Grafting of abbreviated complementarity determining regions containing specificity determining residues essential for ligand contact to engineer a less immunogenic humanzied monoclonal antibody", Journal of Immunology, 2002. vol. 169, pp. 3076-3084.*

Sun et al., "Late and Chronic Antibody-Mediated Rejection: Main Barrier to Long Term Graft Survival", Clinical and Developmental Immunology vol. 2013, Article ID 859761, 7 pages http://dx.doi.org/10.1155/2013/859761, retrieved Apr. 14, 2015.*

Shinkawa et al., "The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity," Journal of Bio. Chem., American Soc. of Biolochemical Biologists, vol. 278, No. 5, 2003, pp. 3466-3473.

Teeling et al., "Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas," Blood, vol. 104, No. 6, 2004, pp. 1793-1800.

Valentine MA, Cotner T, Gaur L, Torres R, Clark EA. "Expression of the human B-cell surface protein CD20: alteration by phorbol 12-myristate 13-acetate." Proc Natl Acad Sci U S A. Nov. 1987;84(22):8085-9.

Valentine MA, Meier KE, Rossie S, Clark EA. "Phosphorylation of the CD20 phosphoprotein in resting B lymphocytes. Regulation by protein kinase C." J Biol Chem. Jul. 5, 1989;264(19):11282-7.

protein kinase C." J Biol Chem. Jul. 5, 1989;264(19):11282-7. Golay JT, Clark EA, Beverley PC "The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle" J Immunol. Dec. 1985;135(6):3795-801.

Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF "Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes" Eur J Immunol. Aug. 1986;16(8):881-7.

Morrison SL, Johnson MJ, Herzenberg LA, Oi VT "Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains" Proc Natl Acad Sci U S A. Nov. 1984;81(21):6851-5.

(Continued)

Primary Examiner — Ron Schwadron

(74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch & Birch, LLP

(57) ABSTRACT

The invention is directed to a monoclonal antibody directed against CD20 antigen, for therapeutic administration to humans, wherein each of the light chains of the antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 27, and each of the heavy chains of the antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 19. The invention is further directed to methods of in vitro activation of FcγRIIIA receptors in immune effector cells with the antibody and methods of treating CD20-expressing leukaemia or lymphoma with the antibody.

12 Claims, 10 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Moreton P, Hillmen P. "Alemtuzumab therapy in B-cell lymphoproliferative disorders." Semin Oncol. Aug. 2003;30(4):493-501

Rawstron AC, Kennedy B, Moreton P, Dickinson AJ, Cullen MJ, Richards SJ, Jack AS, Hillmen P. "Early prediction of outcome and response to alemtuzumab therapy in chronic lymphocytic leukemia." Blood. Mar. 15, 2004;103(6):2027-31.

Robak T. "Monoclonal antibodies in the treatment of chronic lymphoid leukemias." Leuk Lymphoma. Feb. 2004;45(2):205-19.

Stangimaier M, Reis S, Hallek M. "Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells." Ann Hematol. Oct. 2004;83(10):634-45.

Mavromatis B, Cheson BD. "Monoclonal antibody therapy of chronic lymphocytic leukemia." J Clin Oncol. May 1, 2003;21(9):1874-81.

Mavromatis BH, Cheson BD << Novel therapies for chronic lymphocytic leukemia. Blood Rev. Jun. 2004;18(2):137-48.

Coleman M, Goldenberg DM, Siegel AB, Ketas JC, Ashe M, Fiore JM, Leonard JP. "Epratuzumab: targeting B-cell malignancies through CD22," Clin Cancer Res. Sep. 1, 2003;9(10 Pt 2):3991S-4S. Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I. "Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display." Clin Cancer Res. Apr. 2002;8(4):995-1002.

Peller S, Kaufman S. "Decreased CD45RA T cells in B-cell chronic lymphatic leukemia patients: correlation with disease stage." Blood. Sep. 15, 1991;78(6):1569-73.

Platsoucas CD, Galinski M, Kempin S, Reich L, Clarkson B, Good RA. "Abnormal T lymphocyte subpopulations in patients with B cell chronic lymphocytic leukemia: an analysis by monoclonal antibodies." J Immunol. Nov. 1982;129(5):2305-12.

Kimby E, Mellstedt H, Nilsson B, Björkholm M, Holm G. "Differences in blood T and NK cell populations between chronic

lymphocytic leukemia of B cell type (B-CLL) and monoclonal B-lymphocytosis of undetermined significance (B-MLUS)." Leukemia. Jul. 1989;3(7):501-4.

Sørskaar D, Førre O, Stavem P. "Natural killer cells in chronic leukemia. Function and markers.", Int Arch Allergy Appl Immunol. 1988;87(2):159-64.

Ziegler HW, Kay NE, Zarling JM. "Deficiency of natural killer cell activity in patients with chronic lymphocytic leukemia." Int J Cancer, Mar. 15, 1981;27(3):321-7.

Chaperot L, Chokri M, Jacob MC, Drillat P, Garban F, Egelhofer H, Molens JP, Sotto JJ, Bensa JC, Plumas J. "Differentiation of antigenpresenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma." Leukemia. Sep. 2000;14(9):1667-77.

Vuillier F, Dighiero G. "Cell therapy by dendritic cells in chronic lymphoid leukemia: state of the art" Bull Cancer. Aug.-Sep. 2003;90(8-9):744-50.

Ratanatharathorn V, Ayash L, Reynolds C, Silver S, Reddy P, Becker M, Ferrara JL, Uberti JP. "Treatment of chronic graft-versus-host disease with anti-CD20 chimeric monoclonal antibody." Biol Blood Marrow Transplant. Aug. 2003;9(8):505-11.

Becker YT, Becker BN, Pirsch JD, Sollinger HW. "Rituximab as treatment for refractory kidney transplant rejection." Am J Transplant. Jun. 2004;4(6):996-1001.

Grilio-Lopez AJ et at "IDEC-C2B8 chimeric anti-CD20 antibody (MAB): safety and clinical activity in the treatment of patients (pts) with relapsed low-gradeor folicular (IWF:A-D) non-hodgkin's lymphoma (NHL)" British Journal of Haematology, Oxford, GB, vol. 93, 1996, p. 283.

Liu, Alvin Y. et al., "Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity," The Journal of Immunology, Nov. 15, 1987, vol. 139, No. 10, pp. 3521-3526.

Rudikoff, Stuart et al., "Single amino acid substitution altering antigen-binding specificity," Proc. Nati. Acad. Sci., USA, Mar. 1982, Immunology, vol. 79, pp. 1979-1983.

* cited by examiner

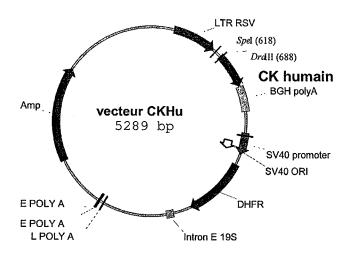


FIG. 1

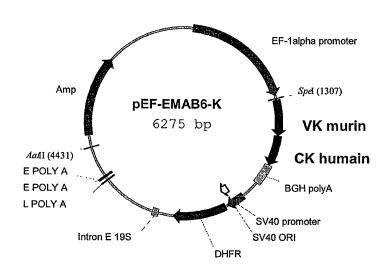
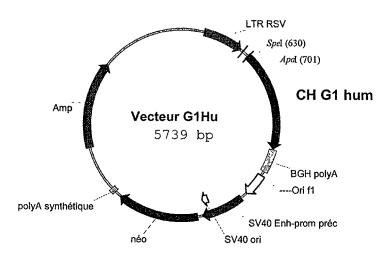



FIG. 2

FIG. 3

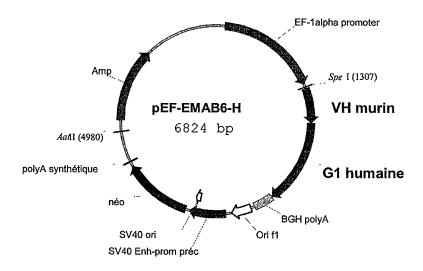
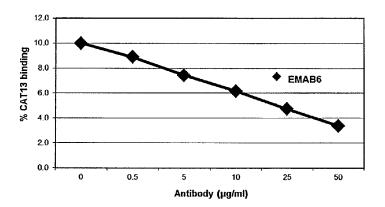



FIG. 4

FIG. 5

FIG. 6A

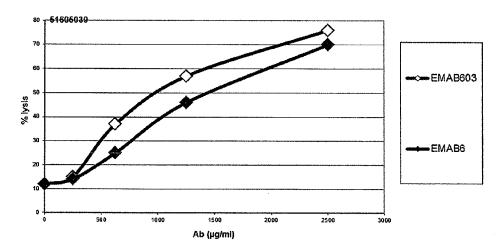


FIG. 6B

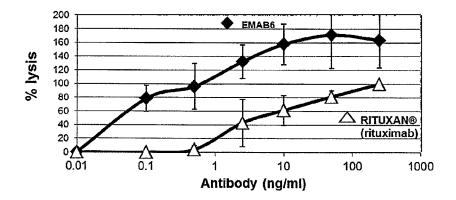


FIG. 7A

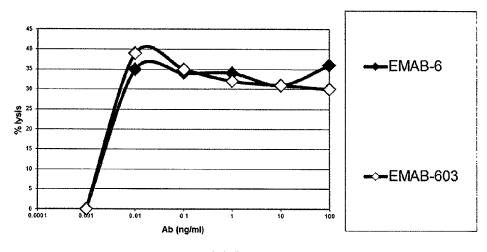
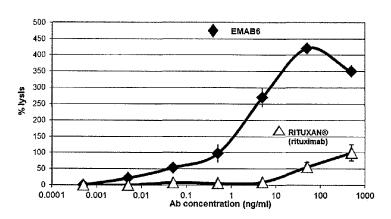



FIG.7B

FIG. 8

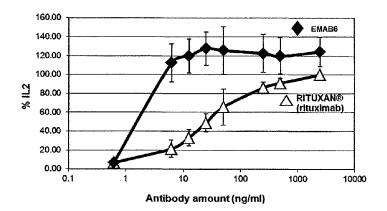


FIG. 9A

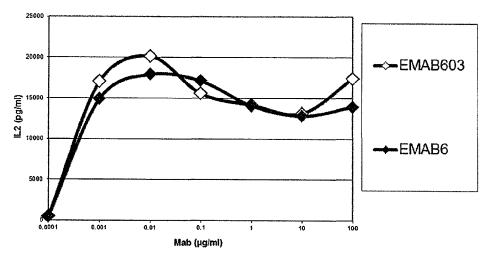


FIG. 9B

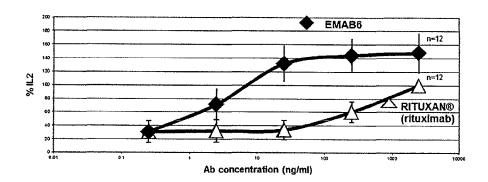
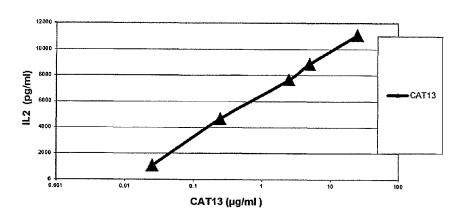
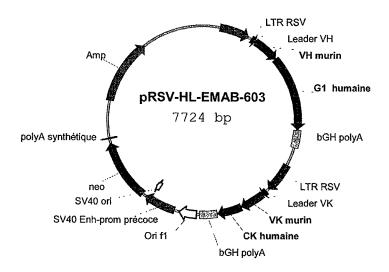




FIG. 10

FIG. 11

FIG.12

MONOCLONAL ANTIBODY DIRECTED AGAINST CD20 ANTIGEN

This application is the national stage of International Application PCT/FR2005/003123, filed in France on Dec. 514, 2005 and claiming priority on French Application No. 004 13320, filed in France on Dec. 15, 2004.

The present invention relates to a monoclonal antibody directed against the CD20 antigen, in which the variable regions of each of the light chains are encoded by sequences which share at least 70% sequence identity with murine nucleic acid sequence SEQ ID No. 5, the variable region of each of the heavy chains are encoded by sequences which share at least 70% identity with murine nucleic acid sequence SEQ ID No. 7, and the constant regions of the light and heavy chains are constant regions from a non-murine species, as well as to the use of such an antibody for activating FcγRIII receptors in immune effector cells and for the manufacture of a drug, in particular for the treatment of leukaemia or lymphoma.

INTRODUCTION AND PRIOR ART

The CD20 antigen is a hydrophobic transmembrane protein with a molecular weight of 35-37 kDa which is present on 25 the surface of mature B lymphocytes (Valentine et al. (1987) Proc. Natl. Acad. Sci. USA 84(22): 8085-8089; Valentine et al. (1989) J. Biol. Chem., 264(19): 11282-11287). It is expressed during the development of B lymphocyte cells (B cells) as from the early pre-B stage until differentiation into 30 plasmocytes, a stage at which this expression disappears. The CD20 antigen is present on both normal B lymphocytes and malign B cells. More specifically, the CD20 antigen is expressed on most phenotype-B lymphomas (80% lymphomas): for example, it is expressed on over 90% non- 35 Hodgkin's B-cell lymphomas (NHL) and over 95% B-type Chronic Lymphocytic Leukaemia (B-CLL). The CD20 antigen is not expressed on haematopoietic stem cells and on plasmocytes.

The function of CD20 has not yet been fully clarified, but it 40 may act as a calcium channel and be involved in the regulation of the first stages of B lymphocytes differentiation (Golay et al. (1985) *J. Immunol.* 135(6): 3795-3801) and proliferation (Tedder et al. (August 1986) *Eur. J. Immunol.* 16(8): 881-887).

Therefore, although some uncertainty remains as regards its role in the activation and proliferation of B cells, the CD20 antigen is, because of its location, an important target for the treatment of conditions which involve tumoural B cells, such as NHL or B-CLL for instance, using antibodies which specifically recognise CD20. Furthermore, this antigen is an ideal target since it is a membrane protein for which no expression modulation or polymorphism is known.

Only one non-radioactively labelled anti-CD20 monoclonal antibody, Rituxan® (rituximab, Genentech), is cursently commercially available for the treatment of B-cell lymphoma. It shows encouraging clinical results in patients with NHL when associated with chemotherapy. Its effectiveness, however, remains variable and frequently modest when it is used alone (Teeling et al. (2004) *Blood* 104(6):1793-1800). 60

In addition, Rituxan® has only a modest effect on B cells in B-CLL. This low degree of effectiveness has been correlated with various phenomena: on the one hand, B-CLL B cells only express CD20 in relatively low quantities, and on the other hand, Rituxan® only induces very low ADCC (Antibody-Dependent Cellular Cytotoxicity) activity levels against these cells in vitro. These two observations might

2

explain the correlation that has been observed between the level of expression of CD20 on tumours (in quantitative flow cytometry) and response to treatments.

Since B-CLL is the commonest form of leukaemia in western countries, and high-dose chemotherapy treatment sometimes prove to be insufficient and involve side effects which lead to haematopoietic aplasia and immunodeficiency, monoclonal antibodies appear to be an innovative approach. It is therefore of primary importance to develop antibodies which are capable of specifically targeting the CD20 antigen and which allow tumour cells such as B-CLL, which only express this antigen to a limited degree, to be destroyed.

Antibodies 2F2 and 7D8, proposed by Genmab (Teeling et al. (2004) *Blood* 104(6): 1793-1800) for the treatment of B-CLL, have a capacity to activate the complement which is greater than that induced by Rituxan®. These antibodies, however, have a low ADCC activity, similar to that of Rituxan®. Yet, some clinicians have shown that the complement activity is the cause of deleterious side effects, as the antibodies trigger an activation system which leads to the production of molecules (in particular, anaphylatoxins) which have a wide spectrum of non-specific activities (inflammatory, allergic or vascular reactions etc.). In addition, these antibodies are still at the research stage and their clinical effectiveness has yet to be evaluated.

In application FR03/02713 (WO 2004/029092), the present Applicant describes an anti-CD20 antibody which can be produced in the YB2/0 line and which has been selected for its ability to induce a high ADCC activity and a high level of IL-2 production by the Jurkat-CD16 cell compared to Rituxan®. There is a significant need for new anti-CD20 antibodies which will allow the range of B-cell diseases treated using the currently available immunotherapies to be extended; this is particularly the case with B-cell diseases in which the CD20 antigen is expressed to a small degree on the populations of B cells involved, and for which no satisfactory immunotherapies exist.

It is with this purpose in mind that the present Applicant has developed new CD20 antibodies which exhibit a particularly high ADCC activity compared to Rituxan®.

SUMMARY OF THE INVENTION

A first object of the invention therefore relates to a monoclonal antibody directed against the CD20 antigen, in which the variable region of each of the light chains is encoded by a sequence which shares at least 70% identity with murine nucleic acid sequence SEQ ID No. 5, the variable region of each of the heavy chains is encoded by a sequence which shares at least 70% identity with murine nucleic acid sequence SEQ ID No. 7, and the constant regions of the light and heavy chains are constant regions from a non-murine species.

DESCRIPTION

The antibodies are made up of heavy and light chains
linked together by disulphide bonds. Each chain is made up,
in the N-terminal position, of a variable region (or domain)
(encoded by rearranged V-J genes for the light chains and
V-D-J genes for the heavy chains) specific to the antigen
against which the antibody is directed, and, in the C-terminal
position, of a constant region made up from a single CL
domain for the light chains, or several domains for the heavy
chains.

For the purposes of the invention, the expressions "monoclonal antibodies" or "monoclonal antibody composition" refer to a preparation of antibody molecules having identical and unique specificities.

The antibody according to the invention, in which the 5 variable regions in the light and heavy chains are from a species which is different from that of the constant regions of the light and heavy chains, is referred to as a "chimeric" antibody.

Murine nucleic acid sequences SEQ ID No. 5 and SEQ ID No. 7 code for the variable domain of each of the light chains and the variable domain of each of the heavy chains respectively, of the antibody produced by murine hybridoma CAT-13.6E12, available at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) under number ACC 474. This hybridoma produces a murine IgG2a, κ-type monoclonal antibody directed against CD20.

These murine sequences were chosen to derive the sequences of the variable regions of the antibodies according 20 to the invention because of the specificity of the CAT-13.6E12 murine antibody for the CD20 antigen, the antigen also recognised by Rituxan®. The variable regions of the antibodies according to the invention share at least 70% identity with sequences SEQ ID No. 5 and SEQ ID No. 7, with this 25 sequence identity providing the antibodies according to the invention with a specificity which is identical to that of the CAT-13.6E2 murine antibody. Preferably, this sequence identity also provides the antibody according to the invention with an affinity for the target which is identical to that of the 30 CAT-13.6E12 murine antibody.

In addition, the present Applicant has surprisingly shown that the CAT-13.6E12 murine antibody has the ability to induce the secretion of IL-2 in the presence of Jurkat-CD16 cells which express ectodomains of the FcγRIIIA receptor (as 35 shown in FIG. 11), indicating a strong binding between the murine antibody and human CD16 (FcγRIIIA), which again motivated the choice made by the present Applicant.

In addition, in the antibodies according to the invention, the constant regions of the light and heavy chains are from a 40 non-murine species. In this regard all non-murine mammal species and families may be used, in particular humans, monkeys, murine (apart from mice), porcine, bovine, equine, feline, canine, as well as birds.

The antibodies according to the invention may be constructed using standard recombinant DNA techniques, well known to those skilled in the art, and more particularly using the "chimeric" antibody construction techniques described, for example, in Morrison et al. (1984) *Proc. Natl. Acad. Sci.* USA 81: 6851-6855, where the recombinant DNA technology is used to replace the constant region of a heavy chain and/or the constant region of a light chain in an antibody from a non-human mammal, with the corresponding regions in an human immunoglobulin. One particular embodiment will be illustrated below.

Advantageously, the variable region of each of the light chains of the antibody according to the invention is encoded by a sequence which shares at least 80% identity with murine nucleic acid sequence SEQ ID No. 5, and the variable region of each of the heavy chains of the antibody according to the 60 invention is encoded by a sequence which shares at least 80% identity with murine nucleic acid sequence SEQ ID No. 7.

Advantageously, the variable region of each of the light chains of the antibody according to the invention is encoded by a sequence which shares at least 90% identity with murine 65 nucleic acid sequence SEQ ID No. 5, and the variable region of each of the heavy chains of the antibody according to the

4

invention is encoded by a sequence which shares at least 90% identity with murine nucleic acid sequence SEQ ID No. 7.

Advantageously, the variable region of each of the light chains of the antibody according to the invention is encoded by a sequence which shares at least 95% identity with murine nucleic acid sequence SEQ ID No. 5, and the variable region of each of the heavy chains of the antibody according to the invention is encoded by a sequence which shares at least 95% identity with murine nucleic acid sequence SEQ ID No. 7.

Advantageously, the variable region of each of the light chains of the antibody according to the invention is encoded by a sequence which shares at least 99% identity with murine nucleic acid sequence SEQ ID No. 5, and the variable region of each of the heavy chains of the antibody according to the invention is encoded by a sequence which shares at least 99% identity with murine nucleic acid sequence SEQ ID No. 7.

Advantageously, the invention also relates to any antibody in which the variable regions of the heavy and light chains include one or more substitution(s), insertion(s) or deletion(s) of one or more amino acids, with these sequence modifications complying with the sequence identity percentage levels defined above, without affecting the antibodys' specificity or affinity for the target.

The antibodies of the invention are also any antibody which includes the CDRs (Complementary Determining Regions) of the CAT-13.6E12 antibody, combined with FR (framework) regions (highly conserved regions of the variable regions, also known as "backbone" regions). Such antibodies have affinities and specificities which are closely comparable with, and preferably identical to, those of the CAT-13.6E12 murine antibody.

Preferably, the variable region of each of the light chains of the antibody according to the invention is encoded by murine nucleic acid sequence SEQ ID No. 5 or by murine nucleic acid sequence SEQ ID No. 25, and the variable region of each of the heavy chains of the antibody according to the invention is encoded by murine nucleic acid sequence SEQ ID No. 7.

In one embodiment of the invention, an antibody according to the invention is therefore a monoclonal antibody directed against the CD20 antigen, in which the variable region of each of the light chains is encoded by murine nucleic acid sequence SEQ ID No. 5, the variable region of each of the heavy chains is encoded by murine nucleic acid sequence SEQ ID No. 7, and the constant regions of the light and heavy chains are constant regions from a non-murine species.

In a second embodiment, the antibody according to the invention is therefore a monoclonal antibody raised against the CD20 antigen, in which the variable regions of each of the light chains are encoded by murine nucleic acid sequence SEQ ID No. 25, the variable regions of each of the heavy chains are encoded by murine nucleic acid sequence SEQ ID No. 7, and the constant regions of the light and heavy chains are constant regions from a non-murine species.

In both embodiments, the antibodies differ in their nucleotide sequences by a single nucleotide: the nucleotide located at position 318 in SEQ ID No. 5 and SEQ ID No. 25, which correspond to a cytosine and an adenine respectively.

The antibodies of the invention according to these embodiments have specificities and affinities for the target antigen, CD20, which are comparable with, and preferably identical to, those of the CAT-13.6E12 murine antibody.

Preferably, the constant regions of each of the light chains and each of the heavy chains of the antibody according to the invention are human constant regions. In this preferred embodiment of the invention, the immunogenicity of the

antibody is reduced in humans, and consequently, the antibodys' effectiveness is improved upon therapeutic administration to humans.

According to a preferred embodiment of the invention, the constant region of each of the light chains of the antibody according to the invention is of κ type. Any allotype is suitable for the implementation of the invention, e.g. Km(1), Km(1, 2), Km(1, 2, 3) or Km(3), but the preferred allotype is Km(3).

According to another additional embodiment, the constant region of each of the light chains of the antibody according to the invention is of λ type.

According to one specific aspect of the invention, and in particular when the constant regions of each of the light chains and of each of the heavy chains of the antibody according to the invention are human regions, the constant region of each of the heavy chains of the antibody is of γ type. According to this alternative, the constant region of each of the heavy chains of the antibody may be of $\gamma 1$, $\gamma 2$ or $\gamma 3$ type, with these three constant region types exhibiting the specific feature of 20 binding the human complement, or even of γ4 type. Antibodies which have γ-type constant regions for each of the heavy chains belong to the IgG class. Immunoglobulins $G\left(IgG\right)$ are heterodimers made up of 2 heavy chains and 2 light chains, linked together by disulphide bonds. Each chain is made up, 25 in the N-terminal position, of a variable region or domain (encoded by rearranged V-J genes for the light chains and V-D-J genes for the heavy chains) specific to the antigen against which the antibody is directed, and, in the C-terminal position, of a constant region made up of a single CL domain 30 for the light chain, or of 3 domains (CH₁, CH₂ and CH₃) for the heavy chain. Combining the variable domains and the CH₁ and CL domains of the heavy and light chains make up the Fab fragments which are linked to the Fc regions through a highly flexible hinge region allowing each Fab fragment to 35 bind its antigen target whilst the Fc region, the mediator for the effector properties of the antibody, remains accessible to effector molecules such as FcyR and C1q receptors. The Fc region, made up of both CH2 and CH3 globular domains, is glycosylated at the CH₂ domain, with a lactosamine-type 40 biantennary N-glycan linked to Asn 297 being present on each of the 2 chains.

Preferably, the constant region of each of the heavy chains of the antibody is of $\gamma 1$ type, as such antibody exhibits the ability to induce ADCC activity in the greatest number of 45 (human) individuals. In this respect, any allotype is suitable for the implementation of the invention, e.g. G1m(3), G1m(1, 2, 17), G1m(1, 17) or G1m(1, 3). Preferably, the allotype is G1m(1, 17).

According to one particular aspect of the invention, the 50 constant region of each of the heavy chains of the antibody is of γ1 type, and is encoded by human nucleic acid sequence SEQ ID No. 23, with the constant region of each of the light chains being encoded by human nucleic acid sequence SEQ ID No. 21. Such an antibody therefore includes a murine 55 variable region and a human constant region, with γ1-type heavy chains. This antibody therefore belongs to the IgG1 sub-class. According to the embodiment of the antibody according to the invention, the antibody has two light chains, the variable domain of which is encoded by murine nucleic 60 acid sequence SEQ ID No. 5 or murine nucleic acid sequence SEQ ID No. 25, and the human constant region of which is encoded by nucleic acid sequence SEQ ID No. 21, and two heavy chains, the variable domain of which is encoded by murine nucleic acid sequence SEQ ID No. 7 and the constant 65 region of which is encoded by human nucleic acid sequence SEQ ID No. 23.

6

Preferentially, each of the light chains of the antibody according to the invention is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 13 or by murine-human chimeric nucleic acid sequence SEQ ID No. 27, and each of the heavy chains is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 19. Murine-human chimeric nucleic acid sequence SEQ ID No. 13, which codes for each of the light chains of the antibody, is obtained by fusing murine nucleic acid sequence SEQ ID No. 5, which codes for the variable domain of each of the light chains of the antibody, to human nucleic acid sequence SEQ ID No. 21, which codes for the constant region of each of the light chains of the antibody.

Murine-human chimeric nucleic acid sequence SEQ ID No. 27, which codes for each of the light chains of the antibody, is obtained by fusing murine nucleic acid sequence SEQ ID No. 25, which codes for the variable domain of each of the light chains of the antibody, to human nucleic acid sequence SEQ ID No. 21, which codes for the constant region of the light chains of the antibody.

Murine-human chimeric nucleic acid sequence SEQ ID No. 19, which codes for each of the heavy chains of the antibody, is obtained by fusing murine nucleic acid sequence SEQ ID No. 7, which codes for the variable domain of each of the heavy chains of the antibody, to human nucleic acid sequence SEQ ID No. 23, which codes for the constant region of each of the heavy chains of the antibody.

According to a particular aspect of the invention, when each of the light chains of the antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 13, and each of the heavy chains is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 19, the peptide sequence of each of the light chains, deduced from nucleic acid sequence SEQ ID No. 13, is sequence SEQ ID No. 14 and the peptide sequence of each of the heavy chains, deduced from nucleic acid sequence SEQ ID No. 19, is sequence SEQ ID No. 20.

According to a further particular aspect of the invention, when each of the light chains of the antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 27, and each of the heavy chains is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 19, the peptide sequence of each of the light chains, deduced from nucleic acid sequence SEQ ID No. 27, is sequence SEQ ID No. 28, and the peptide sequence of each of the heavy chains, deduced from nucleic acid sequence SEQ ID No. 19, is sequence SEQ ID No. 20.

The peptide sequences SEQ ID No. 14 and SEQ ID No. 28 differ only by the amino acid present at position 106 on each of these two sequences. The amino acid located at position 106 is lysine (K) in sequence SEQ ID No. 28; it is asparagine (N) in sequence SEQ ID No. 14.

The invention also relates to antibodies in which each of the light chains encoded by murine-human chimeric nucleic acid sequence shares at least 70% homology or identity with murine-human chimeric nucleic acid sequence SEQ ID No. 13, and each of the heavy chains encoded by a murine-human chimeric nucleic acid sequence shares at least 70% homology or identity with the murine-human chimeric nucleic acid sequence SEQ ID No. 19, with these modifications adversely impairing neither the specificity of the antibody nor its effector activities, such as ADCC (Antibody-Dependent Cell-mediated Cytotoxicity) activity.

In a particularly advantageous manner, the antibody of the invention is produced by a rat hybridoma cell line. The line which produces the antibody according to the invention is an important characteristic since it provides the antibody with

certain of its particular properties. In fact, the method of expression of the antibody induces the post-translational modifications, in particular the glycosylation modifications, which may vary from one cell line to another, and therefore provides antibodies which have identical primary structures 5 with different functional properties.

In a preferred embodiment, the antibody is produced in the rat hybridoma YB2/0 cell line (cell YB2/3HL.P2.G11.16Ag.20, registered at the American Type Culture Collection under ATCC number CRL-1662). This line 10 was chosen because of its ability to produce antibodies with improved ADCC activity compared to antibodies with the same primary structures produced, for example, in CHO cells.

According to a specific embodiment, a preferred antibody 15 according to the invention is antibody EMAB6 produced by clone R509, registered on 8 Nov. 2004 under registration number CNCM I-3314 at the Collection Nationale de Cultures de Microorganismes (CNCM, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France). Each of the 20 light chains of the EMAB6 antibody is encoded by murinehuman chimeric nucleic acid sequence SEQ ID No. 13, and each of the heavy chains is encoded by murine-human chimeric nucleic acid SEQ ID No. 19. This chimeric antibody competes with the CAT-13.6E12 murine antibody in binding 25 CD20 and has a cytotoxic activity which is much greater than that of Rituxan®, which may be attributable in part to the specific glycosylation of the N-glycan of the heavy chain of these antibodies (see Example 4). In fact, a specific feature of the R509 clone is that it produces an EMAB6 antibody composition with a fucose/galactose ratio of less than 0.6, which has been shown, in patent application FR 03 12229, to be optimal to provide the antibody with strong ADCC activity. This antibody is therefore particularly interesting as a therapeutic tool for the treatment of conditions in which the cells to 35 be targeted express CD20.

In a further specific embodiment, another preferred antibody according to the invention is antibody EMAB603 produced by clone R603, registered on 29 Nov. 2005 under registration number CNCM I-3529 at the Collection Nation- 40 ale de Cultures de Microorganismes (CNCM, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France). Each of the light chains of the EMAB603 antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 27, and each of the heavy chains is encoded by murine-human 45 chimeric amino acid sequence SEQ ID No. 19. This chimeric antibody competes with the CAT-13.6E12 murine antibody in binding CD20 and has a cytotoxic activity which is much greater than that of Rituxan®, which may be attributable in part to the specific glycosylation of the N-glycan of the heavy 50 chain of these antibodies (see Example 3). In fact, a specific feature of the R603 clone is that it produces an EMAB603 antibody composition with a fucose/galactose ratio of less than 0.6, (see Example 4) which has been shown, in patent application FR 03 12229, to be optimal to provide the anti- 55 body with strong ADCC activity. This antibody is therefore of particular interest as a therapeutic tool for the treatment of conditions in which the cells to be targeted express CD20.

Another object of the invention relates to vector pEF-EMAB6-K for the expression of the light chain of an antibody 60 according to the invention, having sequence SEQ ID No. 12. This vector is the vector which allows an antibody according to the invention, the light chain of which is encoded by nucleic acid sequence SEQ ID No. 13, the deduced peptide sequence of which is sequence SEQ ID No. 14, to be 65 expressed. This vector is a nucleic acid molecule into which murine nucleic acid sequence SEQ ID No. 5, which codes for

8

the variable domain of each of the light chains of the antibody, and nucleic acid sequence SEQ ID No. 21, which codes for the constant regions of each of the light chains of the antibody, have been inserted to be introduced and maintained in a host cell. It allows foreign nucleic acid fragments to be expressed in the host cell since it has sequences (promoter, polyadenylation sequence, selection gene) which are essential to this expression. Such vectors are well known to those skilled in the art and may be, without implied limitation, an adenovirus, a retrovirus, a plasmid or a bacteriophage. In addition, any mammalian cell may be used as a host cell, that is as a cell which expresses the antibody according to the invention, e.g. YB2/0, CHO, CHO dhfr– (e.g. CHO DX B11, CHO DG44), CHO Lec13, SP2/0, NSO, 293, BHK or COS.

Another object of the invention relates to vector pEF-EMAB6-H for the expression of the heavy chain of an antibody according to the invention, having sequence SEQ ID No. 18. This vector is the vector which allows an antibody according to the invention, the heavy chain of which is encoded by nucleic acid sequence SEQ ID NO 19, the deduced peptide sequence of which is sequence SEQ ID No. 20, to be expressed. This vector is a nucleic acid molecule into which murine nucleic acid sequence SEQ ID No. 7, which codes for the variable domain of each of the heavy chains of the antibody, and human nucleic acid sequence SEQ ID No. 23, which codes for the constant region of each of the heavy chains of the antibody, have been inserted to be introduced and maintained in a host cell. It allows these foreign nucleic acid fragments to be expressed in the host cell since it has sequences (promoter, polyadenylation sequence, selection gene) which are essential to this expression. Just as indicated earlier, the vector may be, for example, a plasmid, an adenovirus, a retrovirus or a bacteriophage, and the host cell may be any mammalian cell, e.g. YB2/0, CHO, CHO dhfr- (CHO DX B11, CHO DG44), CHO Lec13, SP2/0, NSO, 293, BHK or COS.

An antibody produced by co-expressing the pEF-EMAB6-K and pEF-EMAB6-H vectors in the YB2/0 cell is illustrated by the anti-CD20 EMAB6 antibody, produced by clone R509 (registered under registration number CNCM I-3314 at the CNCM). This antibody induces a cytotoxicity which is greater than that induced by Rituxan®, both in cells from patients with B-CLL (on which the CD20 antigen is expressed at lower levels) and in Raji cells used as a model and which express CD20 at higher densities compared to the cells from patients with B-CLL. Furthermore, the EMAB6 antibody induces a secretion of IL-2 (interleukin 2) in Jurkat-CD16 cells which is at much higher levels than with Rituxan®. Since the EMAB6 antibody can be produced by growing the R509 clone in a culture medium and under conditions which allow the vectors described above to be expressed, it is therefore a very interesting tool for advancing the therapy and diagnosis of B-cell diseases in which the CD20 antigen is involved, more specifically B-CLL, as well as for research in this area.

A particular object of the invention is a stable cell line which expresses an antibody according to the invention.

Advantageously, the stable cell line which expresses an antibody according to the invention is selected from the group consisting of: SP2/0, YB2/0, IR983F, a human myeloma such as Namalwa or any other cell of human origin such as PERC6, the CHO lines, in particular CHO-K-1, CHO-Lec10, CHO-Lec1, CHO-Lec13, CHO Pro-5, CHO dhfr- (CHO DX B11, CHO DG44), or other lines chosen from Wil-2, Jurkat, Vero, Molt-4, COS-7, 293-HEK, BHK, K⁶H⁶, NSO, SP2/0-Ag 14 and P3X63Ag8.653.

The line used is preferably the rat hybridoma YB2/0 cell line. This line was chosen because of its ability to produce antibodies with improved ADCC activity with respect to antibodies with the same primary structure produced, for example, in CHO cells.

According to one particular aspect of the invention, the stable cell line which expresses an antibody according to the invention and which is more specifically chosen from the group described above, has incorporated the two pEF-EMAB6-K and pEF-EMAB6-H expression vectors as 10 described earlier.

One specific aspect of the invention relates to clone R509, registered under registration number CNCM I-3314 at the Collection Nationale de Cultures de Microorganismes (CNCM).

One specific aspect of the invention relates to clone R603, registered under registration number CNCM I-3529 at the Collection Nationale de Cultures de Microorganismes (CNCM).

Another object of the invention relates to a DNA fragment 20 having sequence SEQ ID No. 19 which codes for the heavy chain of an antibody according to the invention. Murine-human chimeric nucleic acid sequence SEQ ID No. 19 codes for each of the heavy chains of the antibody. It is obtained by fusing murine nucleic acid sequence SEQ ID No. 7, which 25 codes for the variable domain of each of the heavy chains of the antibody, to human nucleic acid sequence SEQ ID No. 23, which codes for the constant region of each of the heavy chains of the antibody.

Another specific object of the invention relates to a DNA 30 fragment having sequence SEQ ID No. 13, which codes for the light chain of an antibody according to the invention. Murine-human chimeric nucleic acid sequence SEQ ID No. 13 codes for each of the light chains of the antibody. It is obtained by fusing murine nucleic acid sequence SEQ ID No. 35 5, which codes for the variable domain of each of the light chains of the antibody, to human nucleic acid sequence SEQ ID No. 21, which codes for the constant region of each of the light chains of the antibody.

Another specific object of the invention relates to a DNA 40 fragment having sequence SEQ ID No. 27, which codes for the light chain of an antibody according to the invention. Murine-human chimeric nucleic acid sequence SEQ ID No. 27, codes for each of the light chains of the antibody. It is obtained by fusing murine nucleic acid sequence SEQ ID No. 45 25, which codes for the variable domain of each of the light chains of the antibody, to human nucleic acid sequence SEQ ID No. 21, which codes for the constant region of each of the light chains of the antibody.

One specific object of the invention relates to the use of the antibody according to the invention to activate, in vivo or in vitro, the Fc γ RIIIA receptors of effector immune cells. In fact, the antibodies of the invention have the specific feature and advantage of being cytotoxic. As such, they exhibit the ability to activate Fc γ RIIIA receptor with their Fc regions. 55 This is of considerable interest as this receptor is expressed on the surface of cells known as "effector cells": binding of the Fc region of the antibody to its receptor carried by the effector cell causes the activation of Fc γ RIIIA receptors and the destruction of the target cells. Effector cells are, for instance, 60 NK (Natural Killer) cells, macrophages, neutrophils, CD8 lymphocytes, T γ δ lymphocytes, NKT cells, eosinophils, basophils or mastocytes.

In one specific aspect, the antibody of the invention is used as a drug. Advantageously, such a drug is intended for the 65 treatment of conditions in which the target cells are cells which express CD20, such as malignant B-cell lymphoma.

10

According to one advantageous aspect, the antibody according to the invention is used to manufacture a drug for the treatment of leukaemia or lymphoma.

One specific object of the invention is the use of the antibody according to the invention for the manufacture of a drug for the treatment of a pathology selected from the group consisting of acute B lymphoblastic leukaemia, B-cell lymphoma, mature B-cell lymphoma, including B-type Chronic Lymphocytic Leukaemia (B-CLL), small B-cell lymphoma, B-cell prolymphocytic leukaemia, lymphoplasmocytic lymphoma, mantle cell lymphoma, follicular lymphoma, marginal zone MALT-type lymphoma, lymph node marginal zone lymphoma with or without monocytoid B cells, splenic marginal zone lymphoma (with or without villous lymphocytes), tricholeucocytic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma, as well as any immune dysfunction diseases involving B lymphoid cells, including autoimmune diseases.

Another object of the invention is the use of the antibody according to the invention for the manufacture a drug for the treatment of lymphoid leukaemia.

Another object of the invention is the use of the antibody according to the invention for the manufacture of a drug for the treatment of B-type Chronic Lymphoid Leukaemia (B-CLL). Furthermore, the antibody according to the invention is particularly well suited for the treatment of conditions in which CD20 is less strongly expressed on B cells, and preferably, B-CLL (B-type Chronic Lymphocytic Leukaemia). In this regard, the antibody according to the invention may be used in combination with one or more further antibody(ies), e.g. monoclonal antibodies directed against one or more further antigens expressed on lymphoid cells, such as, for example, antigens HLA-DR, CD19, CD23, CD22, CD80, CD32 and CD52, for the manufacture of a drug for the treatment of leukaemia or lymphoma. Thus, the humanised antibody Campath-1H® (alentuzumab, MabCampathR®) which targets a molecule which is abundantly expressed on lymphoid cells, the CD52 antigen, and which induces cell lysis by mobilising the host effector mechanisms (complement binding, antibody-dependent cytotoxicity) is used in the treatment of CLL (Moreton P., Hillmen P. (2003) Semin. Oncol. 30(4): 493-501; Rawstron A. C. et al, (2004) Blood 103(6): 2027-2031; Robak T. (2004) Leuk. Lymphoma 45(2): 205-219; Stanglmaier M. et al, (2004) Ann. Hematol. 83(10): 634-645). Clinical tests are also underway to evaluate antibodies or immunotoxins which target the antigens HLA-DR, CD22, CD23, CD80 in patients with CLL (Mavromatis B. H., Cheson B. D. (2004) Blood Rev. 18(2): 137-148; Mavromatis B., Cheson B. D. (2003) *J. Clin. Oncol.* 21(9): 1874-1881, Coleman M. et al, (2003) Clin. Cancer Res. 9: 3991S-3994S; Salvatore G. et al, (2002) Clin. Cancer Res. 8: 995-1002).

In a further embodiment, the antibody according to the invention may be used in combination with cells which express FcγRs, such as NK cells, NKT (Natural Killers T) cells, Tγδ lymphocytes, macrophages, monocytes or dendritic cells, i.e. in combination with a cellular therapy (Peller S., Kaufman S. (1991) *Blood* 78: 1569, Platsoucas C. D. et al, (1982) *J. Immunol.* 129: 2305; Kimby E. et al, (1989) *Leukaemia* 3(7): 501-504; Soorskaar D. et al, *Int. Arch. Allery Appl. Immunol.* 87(2): 159-164; Ziegler H. W. et al, (1981) *Int. J. Cancer* 27(3): 321-327; Chaperot L. et al, (2000) *Leu-*

kaemia 14(9): 1667-1677; Vuillier F., Dighiero G. (2003) Bull. Cancer. 90(8-9): 744-750).

In addition, the antibody according to the invention advantageously allows the doses administered to patients to be reduced: advantageously, the antibody dose administered to the patient is 2 times, 5 times, or even 10 times, 25 times, 50 times or particularly advantageously 100 times less than a dose of Rituxan®. Advantageously, the antibody dose administered to the patient is between 2 and 5 times, between 5 and 10 times, between 5 and 25 times, between 5 and 50 times, or even between 5 and 100 times less than a dose of Rituxan®. Thus, the antibody according to the invention, for instance the EMAB6 antibody, may advantageously be administered at a 15 dose of less than 187.5 mg/m², 75 mg/m², 37.5 mg/m², 15 mg/m², 7.5 mg/m², or particularly advantageously less than 3.75 mg/m². The dose administered is advantageously between 187.5 mg/m² and 75 mg/m², or between 75 mg/m² and 37.5 mg/m², between 75 mg/m² and 15 mg/m², between $75 \,\mathrm{mg/m^2}$ and $7.5 \,\mathrm{mg/m^2}$, or even between $75 \,\mathrm{mg/m^2}$ and $3.75 \,\mathrm{mg/m^2}$ mg/m^2 .

Thus, the invention also refers to a method for treating $_{25}$ diseases in which the target cells are cells which express CD20, such as malignant B-cell lymphoma, consisting in administering to a patient an effective dose of a composition containing an antibody according to the invention. More specifically, the treatment method is particularly suited to the 30 treatment of leukaemia or lymphoma. Even more specifically, it is a method for treating a pathology chosen from acute B lymphoblastic leukaemia, B-cell lymphoma, mature B-cell lymphoma, including B-type Chronic Lymphocytic Leu- 35 kaemia (B-CLL), small B-cell lymphoma, B-cell prolymphocytic leukaemia, lymphoplasmocytic lymphoma, mantle cell lymphoma, follicular lymphoma, marginal zone MALT-type lymphoma, lymph node marginal zone lymphoma with or without monocytoid B cells, splenic marginal zone lymphoma (with or without villous lymphocytes), tricholeucocytic leukaemia, diffuse large B-cell lymphoma, Burkitt's lymphoma, as well as any immune dysfunction diseases involving cells of the B lymphoid lines, including auto-immune diseases, consisting in administering an effective dosage of an antibody or antibody composition according to the invention.

A particular object of the invention is the use of an antibody 50 according to the invention for the manufacture of a drug for the treatment of chronic graft-versus-host disease in order to treat symptoms which involve the receiver's B cells.

Finally, a last object of the invention is the use of an antibody according to the invention for the manufacture of a drug for a treatment of organ, in particular kidney, transplant rejection.

Recent studies (Ratanatharathorn et al, (August 2003) *Biol. Blood Marrow Transplant* 9(8): 505-511; Becker et al, (June 2004) *Am. J. Transplant*. 4(6): 996-1001) have in fact shown the benefits of anti-CD20 antibodies in the treatment of such conditions.

Further aspects and advantages of the invention will be described in the following examples which should be 65 regarded as illustrative examples and do not limit the scope of the invention.

12

DESCRIPTION OF THE FIGURES

Drawings

FIG. 1: Schematic representation of the CKHu vector used for the chimerisation of the light chain kappa of antibodies EMAB6 and EMAB603.

FIG. 2: Schematic representation of the light chain pEF-EMAB6-K expression vector used for the production of anti-body EMAB6.

FIG. 3: Schematic representation of the G1Hu vector used for the chimerisation of the heavy chain of antibodies EMAB6 and EMAB603.

FIG. 4: Schematic representation of the heavy chain pEF-EMAB6-H expression vector used for the production of anti-body EMAB6.

FIG. 5: Competition by the chimeric EMAB6 antibody for the binding of the murine antibody produced by CAT-13.6E12 (CAT13) to CD20 expressed on Raji cells.

FIG. 6: Complement-dependent cytotoxic activity of the anti-CD20 antibodies on Raji cells. (A) Rituxan®: open triangle, EMAB6: closed lozenge. Cell lysis is estimated by measuring the intracellular LDH released into the supernatant. Results are expressed as percentage lysis, with 100% being the value obtained with Rituxan® (at 5,000 ng/mL anti-CD20 antibody). Mean of 5 tests. (B) Comparison of the complement-dependent cytotoxic activities of EMAB6 (closed lozenge) and EMAB603 (open lozenge).

FIG. 7: ADCC activity induced by anti-CD20 antibodies in the presence of Raji cells. (A) Rituxan®: open triangle, EMAB6: closed lozenge. Cell lysis is estimated by measuring the intracellular LDH released into the supernatant. Results are expressed as percentage lysis, with 100% being the value obtained with Rituxan® (at 250 ng/mL anti-CD20 antibody). Mean of 3 tests. (B) Comparison of ADCC induced by EMAB6 (closed lozenge) and EMAB603 (open lozenge).

FIG. 8: ADCC activity induced by anti-CD20 antibodies in the presence of B lymphocytes from patients with B-CLL. Rituxan®: open triangle, EMAB6: closed lozenge. E/T ratio=15. Cell lysis is estimated by measuring the calcein released into the supernatant. Results are expressed as percentages, with 100% being the value obtained with Rituxan® (at 500 ng/mL anti-CD20 antibody). Mean of 4 experiments corresponding to 4 different patients.

FIG. 9: Activation of CD16 (FcγRIIIA) induced by anti-CD20 antibodies in the presence of Raji cells. (A) Rituxan®: open triangle, EMAB6: closed lozenge. Results are expressed as percentage of IL-2, as measured in supernatants using ELISA; with 100% being the value obtained with Rituxan® (at 2,500 ng/mL anti-CD20 antibody). Mean of 4 tests (B). Comparison between the activation of CD16 (FcγRIIIA) as induced by EMAB6 (closed lozenge) and EMAB603 (open lozenge).

FIG. 10: Activation of CD16 (FcγRIIIA) induced by anti-CD20 antibodies in the presence of B lymphocytes from patients with B-CLL. Rituxan®: open triangle, EMAB6: closed lozenge. Results are expressed as percentage of IL-2, as measured in the supernatants using ELISA; with 100% being the value obtained with Rituxan® (at 2,500 ng/mL anti-CD20 antibody). Mean of 12 patients.

FIG. 11: Production of IL-2 induced by the CAT-13.6E12 murine antibody in the presence of Jurkat-CD16 cells (Fc γ RIIIA).

FIG. 12: Schematic representation of the heavy chain and light chain pRSV-HL-EMAB603 expression vector used for the production of antibody EMAB603.

EXAMPLES

Example 1

Construction of Expression Vectors for Anti-CD20 Chimeric Antibodies EMAB6 and EMAB603

A. Determination of the Sequence of the Variable Regions Of the CAT-13.6E12 Murine Antibody

Total RNA from murine hybridoma CAT-13.6E12 cells (supplier: DSMZ, ref. ACC 474), which produces an IgG2a, κ -type immunoglobulin, was isolated (RNAeasy kit, Qiagen ref. 74104). After reverse transcription, the variable domains of the light (V κ) and heavy (VH) chains of the CAT-13.6E12 antibody were amplified using the 5'RACE technique (Rapid Amplification of CDNA Ends) (GeneRacer kit, Invitrogen ref. L1500-01). The primers used for the two steps were the following:

- 1. Reverse Transcription Primers
- a. Murine Kappa specific antisense primer (SEQ ID No. 1)

5'- ACT GCC ATC AAT CTT CCA CTT GAC -3'

b. Murine G2a specific antisense primer (SEQ ID No. 2)

5'- CTG AGG GTG TAG AGG TCA GAC TG -3'

- 2. 5'RACE PCR Primers
- a. Murine Kappa specific antisense primer (SEQ ID No. 3)

5'- TTGTTCAAGAAGCACACGACTGAGGCAC -3'

b. Murine G2a specific antisense primer (SEQ ID No. 4)

5'- GAGTTCCAGGTCAAGGTCACTGGCTCAG -3'

The resulting VH and V κ PCR products were cloned into 40 vector pCR4Blunt-TOPO (Zero blunt TOPO PCR cloning kit, Invitrogen, ref. K2875-20) and sequenced. The nucleotide sequence of the V κ region of the murine CAT-13.6E12 antibody is shown as sequence SEQ ID No. 5 and the deduced peptide sequence is sequence SEQ ID No. 6. The V κ gene 45 belongs to the V κ 4 class [Kabat et al. (1991) "Sequences of Proteins of Immunological Interest". NIH Publication 91-3242].

The nucleotide sequence of the VH region of CAT-13.6E12 is sequence SEQ ID No. 7 and the deduced peptide sequence is sequence SEQ ID No. 8. The VH gene belongs to the VH1 class [Kabat et al. (1991) "Sequences of Proteins of Immunological Interest". NIH Publication 91-3242].

- B. Construction of Heavy and Light Chain Expression Vectors for Chimeric Antibodies EMAB6 and EMAB603
- 1. Light Chain KAPPA Vector
- 1.1. Light Chain Vector for Antibody EMAB6

The $V\kappa$ sequence cloned into the pCR4Blunt-TOPO sequencing vector was amplified using the following cloning primers:

a) Vκ sense primer (SEQ ID No. 9)

5'- CTCAGT<u>ACTAGT</u>GCCGCCACCATGGATTTTCAAGTGCAGATTTTCA

14

The underlined sequence corresponds to the SpeI restriction site, the sequence in bold lettering corresponds to a Kozak consensus sequence, the ATG initiator is in italics.

b) Vκ antisense primer (SEQ ID No. 10)

5'- TGAAGACACTTGGTGCAGCCACAGTCCGGTTTATTTCCAGCCTGG

T -3

This primer joins the murine $V\kappa$ sequences (in italics) to the human constant region $(C\kappa)$ (in bold). The underlined sequence corresponds to the DraIII restriction site.

The resulting V κ PCR product contains the sequence which codes for the natural signal peptide of the CAT-13.6E12 murine antibody. This V κ PCR product was then cloned between the SpeI and DraIII sites of the light chain chimerisation vector (FIG. 1), which corresponds to sequence SEQ ID No. 11, at 5' in the human constant region C κ , the nucleic acid sequence of which is sequence SEQ ID No. 21 and the deduced peptide sequence of which is sequence SEQ ID No. 22. The human C κ sequence of this chimerisation vector had been modified beforehand by silent mutagenesis in order to create a DraIII restriction site to allow cloning of murine V κ sequences to take place. This chimerisation vector contains an RSV promoter and a bGH (bovine Growth Hormone) polyadenylation sequence together with the dhfr (dihydrofolate reductase) selection gene.

The light chain sequence of the chimeric EMAB6 antibody encoded by this vector is shown as SEQ ID No. 13 for the nucleotide sequence and corresponds to the deduced peptide sequence SEQ ID No. 14.

35 1.2. Light Chain Vector for Antibody EMAB603

The protocol is the same as for the light chain vector for the EMAB6 antibody (see Example 1, B-1.1), apart from the $V\kappa$ antisense primer which is:

b') Vκ antisense primer (SEQ ID No. 29)

5'-**TGAAGA<u>CACTTGGTG</u>CAGCCACAGT**CCG

This primer joins the murine $V\kappa$ sequences (in italics) to the human constant region ($C\kappa$) (in bold). The underlined sequence corresponds to the DraIII, restriction site.

This primer also introduces the mutation $AAC \rightarrow AA$ \underline{A} (framed nucleotide in the antisense primer sequence SEQ ID No. 29), which corresponds to mutation N106K (see nucleotide sequence and deduced peptide sequence SEQ ID No. 25 and SEQ ID No. 26) relative to the natural Vk sequence of CAT-13.6E12 (see. SEQ ID No. 5 and SEQ ID No. 6).

The light chain sequence of the chimeric EMAB603 antibody encoded by this vector is shown as SEQ ID No. 27 for the nucleotide sequence and corresponds to the deduced peptide sequence SEQ ID No. 28.

2. Heavy Chain Vector

A similar approach was applied to the chimerisation of the heavy chains of the EMAB6 and EMAB603 antibodies.

The VH sequence cloned into the pCR4Blunt-TOPO vector was first of all amplified using the following cloning primers:

a) VH sense primer (SEQ ID No. 15)

5'- CTCAGT<u>ACTAGT</u>GCCGCCACCATGGGATTCAGCAGGATCTTTCT

C -3'

The underlined sequence corresponds to the restriction site SpeI, the sequence in bold lettering corresponds to a Kozak consensus sequence, the ATG initiator is in italics.

b) VH antisense primer (SEQ ID No. 16)

5'- GACCGATGGGCCCTTGGTGGAGGCTGAGGAGACGGTGACTGAGGTT

CC -3'

This primer joins the murine VH sequences (in italics) to the human G1 constant region (in bold). The underlined sequence corresponds to the ApaI restriction site.

The amplified VH fragment contains the sequence which 20 codes for the natural signal peptide of the CAT-13.6E12 murine antibody. This VH PCR product was then cloned between the SpeI and ApaI sites in the heavy chain chimerisation vector (FIG. 3) which corresponds to sequence SEQ ID No. 17, at 5' of the γ 1 human constant region, the nucleic acid 25 sequence of which is sequence SEQ ID No. 23 and the deduced peptide sequence of which is sequence SEQ ID No. 24. This chimerisation vector contains an RSV promoter and a bGH (bovine Growth Hormone) polyadenylation sequence as well as the neo selection gene.

The heavy chain sequences of the chimeric EMAB6 and EMAB603 antibodies encoded by this vector are shown as SEQ ID No. 19 for the nucleotide sequence and as SEQ ID No. 20 for the deduced peptide sequence.

3. Final Expression Vectors

3.1. EMAB6 Antibody Expression Vectors

For the expression of the EMAB6 antibody, the RSV promoter of the kappa light chain chimerisation vector (see Example 1, B-1.1) was replaced with the human EF-1 alpha 40 promoter. The final light chain pEF-EMAB6-K expression vector is shown in FIG. 2 and corresponds to sequence SEQ ID No. 12.

The light chain sequence of the chimeric EMAB6 antibody encoded by this vector is shown as SEQ ID No. 13 for the nucleotide sequence and corresponds to the deduced peptide sequence SEQ ID No. 14.

For the expression of the EMAB6 antibody, the RSV promoter of the heavy chain chimerisation vector (see Example 1, B-2) was replaced with the human EF-1 alpha promoter. The thus-obtained final heavy chain pEF-EMAB6-H expression vector is shown in FIG. 4 and corresponds to sequence SEQ ID No. 18.

3.2. EMAB603 Antibody Expression Vector

A unique expression vector containing both heavy chain and light chain transcription units of the anti-CD20 EMAB603 antibody was constructed from two light and heavy chain chimerisation vectors (see Example 1, B-1.2 and B2 respectively) by sub-cloning into the XhoI site of the 60 heavy chain vector, a BgIII-PvuII fragment of the light chain vector containing the light chain transcription unit and the dhfr gene. This pRSV-HL-EMAB603 expression vector includes two selection genes, i.e. neo (neo-phosphotransferase II) and dhfr (dihydrofolate reductase), together with 65 two heavy chain and light chain transcription units under the control of an RSV promoter (FIG. 12).

Production of Cell Lines Derived from the YB2/0 Line Producing Anti-CD20 Chimeric EMAB6 and EMAB603 Antibodies

16

Example 2

The rat YB2/0 cell line (ATCC # CRL-1662) was cultivated in EMS medium (Invitrogen, ref. 041-95181M) containing 5% foetal calf serum (JRH Biosciences, ref. 12107). For transfection, 5 million cells were electroporated (Biorad electroporator, model 1652077) in Optimix medium (Equibio, ref. EKITE 1) with 25 μg of light chain vector pEF-EMAB6-K (FIG. 2), linearised with AatII, and 27 μg of heavy chain vector pEF-EMAB6-H (FIG. 4), linearised with ScaI, for the expression of the EMAB6 antibody, or with vector pRSV-HL-EMAB603, for the expression of the EMAB603 antibody. The electroporation conditions applied were 230 Volts and 960 microFarads in a 0.5-mL cuvette. Each electroporation cuvette was then distributed over 5 P96 plates at a density of 5,000 cells/well.

Placement in a selective RPMI medium (Invitrogen, ref 21875-034) containing 5% dialysed serum (Invitrogen, ref. 10603-017), 500 μ g/mL G418 (Invitrogen, ref. 10131-027) and 25 nM methotrexate (Sigma, ref. M8407), was carried out 3 days after transfection.

The supernatants from the resistant transfection wells were screened for the presence of chimeric immunoglobulin (Ig) by applying an ELISA assay specific to the human Ig sequences.

The 10 transfectants producing the largest amount of antibody were amplified on P24 plates and their supernatants re-assayed using ELISA to estimate their productivity and select, by limited dilution (40 cells/plate), the best three producers for cloning.

After cloning, the R509.6A4 clone (R509-33903/046-6H1 $(1)_6$ A4, productivity: $17 \mu g/10^6$ cells), hereafter referred to as "R509", as well as the R603 clone were selected for the production of the chimeric EMAB6 and EMAB603 antibodies respectively and progressively acclimated to the CD Hybridoma production medium (Invitrogen, ref. 11279-023).

The production of the chimeric EMAB6 and EMAB603 antibodies was achieved by expanding, in CD Hybridoma medium, the acclimated culture obtained by dilution to 3×10^5 cells/mL in 75-cm² and 175-cm² vials and then dilution to 4.5×10^5 cells/mL in roller flasks. Once the maximum volume (1 L) was achieved, culture was continued until the cell viability was only 20%. After production, the chimeric EMAB6 and EMAB603 antibodies were purified using protein-A affinity chromatography (HPLC estimated purity <95%) and checked by polyacrylamide gel electrophoresis.

Example 3

Characterisation of the Functional Activity of Chimeric Antibodies EMAB6 and EMAB603

A. Specificity

55

Specificity of the antigen recognition of the chimeric EMAB6 antibody was evaluated by studying the competition with the murine antibody CAT-13.6E12 (CAT13) for binding the CD20 antigen expressed by Raji cells.

For that purpose, the EMAB6 antibody ($10 \,\mu\text{L}$ at 0.5 to $50 \,\mu\text{g/mL}$) was incubated at 4° C. with a fixed quantity of CAT-13.6E12 murine antibody ($10 \,\mu\text{L}$ at $5 \,\mu\text{g/mL}$) for 20 minutes in the presence of Raji cells ($50 \,\mu\text{L}$ at 4×10^{6} cells/mL). After washing, a mouse anti-IgG antibody coupled to phycoerythrin (PE) was added to the Raji cells so as to specifically detect

the binding of the CAT-13.6E12 murine antibody. The Median Fluorescence Intensities (MFIs) obtained in the presence of various concentrations of EMAB6 are converted to percentages, with 100% corresponding to binding to CAT-13.6E12 cells in the absence of the EMAB6 antibody.

An inhibition curve is thus obtained for binding of the CAT-13.6E12 (CAT13) antibody to Raji cells in the presence of increasing concentrations of EMAB6 (FIG. 5).

This study demonstrates that the chimerisation process has not adversely affected the specificity of the EMAB6 antibody, which does compete with the parental CAT-13.6E12 murine antibody for binding to CD20 expressed on the surface of Raji

body is comparable with that of the EMAB6 antibody.

B. Complement-Dependent Cytotoxic Activity

Complement-dependent cytotoxic activity of the EMAB6 and EMAB603 antibodies was examined with Raji cells in the presence of young rabbit serum as a source of complement; 20 the anti-CD20 chimeric antibody Rituxan® was included in one test, for comparison.

For this test, the Raji cells were adjusted to 6×10^5 cells/mL in IMDM (Iscove's Modified Dulbecco's Medium) 5% FCS (Foetal Calf Serum). The antibodies were diluted with 25 IMDM+0.5% FCS. The reaction mixture was made up of 50 μL antibody, 50 μL young rabbit serum (1/10 IMDM+0.5% FCS dilution of Cedarlane CL 3441 reagent), 50 µL target cells and 50 µL IMDM+0.5% FCS medium. The final antibody concentrations were 5,000, 1,250, 250 and 50 ng/mL. A 30 mula: control without antibodies was included in the test. After 1 hr incubation at 37° C. in a 5% CO₂ atmosphere, the plates were centrifuged and the levels of intracellular LDH released into the supernatant estimated using a specific reagent (Cytotoxicity Detection Kit 1 644 793).

The percentage lysis was estimated using a calibration range obtained using various dilutions of target cells lysed using triton X100 (2%) corresponding to 100, 50, 25, and 0% lysis respectively.

The results shown in FIG. **6**(A) demonstrate that EMAB6 40 and Rituxan® both induce complement-dependent lysis of the Raji cells. Nevertheless, EMAB6 complement activity appeared to be slightly less than that of Rituxan®. This difference is greater at the low concentrations of antibody used in this test. Thus for concentrations of 50 and 250 ng/mL, the 45 activity of EMAB6 is of the order of 45% of that of Rituxan®. This difference becomes smaller as the antibody concentration is increased, with the % complement-dependent cytotoxic activity of the EMAB6 antibody representing 92% of that of Rituxan® at the highest concentration tested, i.e. 5,000 50

This lower complement-dependent cytotoxic activity of the AMAB6 antibody compared to that of Rituxan® may be regarded as an advantage, since it limits the potential in vivo toxicity of EMAB6 compared to Rituxan®, associated with 55 the activation of the conventional complement pathway, which leads to the production of various molecules with undesirable inflammatory, allergic and vascular activities.

The complement activity of the EMAB603 antibody is shown in FIG. 6(B).

C. ADCC Activity

The cytotoxicity of the chimeric EMAB6 antibody was evaluated in the presence of Raji cells or B lymphocytes from patients with CLL. The anti-CD20 chimeric antibody Rituxan® was included in the tests for comparison.

The calcein-labelling ADCC measurement technique used was as follows:

18

NK cells were isolated from PBMCs using the separation on magnetic beads (MACS) technique from Myltenyi. The cells were washed and re-suspended in IMDM+5% FCS ($45\times$ 10° cells/mL). The effector cells and target cells were used in a ratio of 15/1. The Raji cells or the PBMCs (Peripheral Blood Mononuclear Cells) from patients with B-CLL obtained after Ficoll treatment (>95% B cells) were labelled beforehand with calcein (1 mL cells at 3×10⁶ cells/mL in IMDM+5% FCS+20 μL calcein (20 μM), 20 min incubation at 37° C. and then washing with HBSS (Hank's Buffered Saline Solution)) and adjusted to 3×10⁵ cells/mL in IMDM+5% FCS. The antibodies were diluted with IMDM+0.5% FCS (final concentrations: 500; 50; 5; 0.5; 0.05 and 0.005 ng/mL).

The reaction mixture was made up of 50 µL antibody, 50 µL The antigen recognition specificity of the EMAB603 anti- 15 effector cells, 50 µL target cells and 50 µL IMDM medium in a P96 microtitration plate. Two negative controls were used: Lysis without NK: NK effector cells were replaced with IMDM+5% FCS.

> Lysis without antibodies (Ab): antibodies were replaced with IMDM+5% FCS.

After 4 hrs incubation at 37° C. in a 5% CO₂ atmosphere, the plates were centrifuged and the fluorescence associated with the supernatant was measured using a fluorimeter (excitation: 485 nm, emission: 535 nm).

The percentage lysis was estimated using a calibration range obtained using various dilutions of target cells lysed using Triton X100 (2%), corresponding to 100, 50, 25, and 0% lysis respectively.

The results were first calculated using the following for-

% lysis=(% lysis with Antibody and NK)-(% lysis without Antibody)-(% lysis without NK)

and then expressed as relative percentages, with 100% being 35 the value obtained at the highest concentration of Rituxan®.

The results obtained for the EMAB6 antibody on the Raji line cells shown in FIG. 7(A) demonstrate that, irrespective of the concentration being tested, the cytotoxicity induced by the EMAB6 antibody is greater than that induced by Rituxan®. This difference is particularly large at low antibody concentrations. Thus, at 0.5 ng/mL, the lysis percentages were 96% and 4% for EMAB6 and Rituxan® respectively. By increasing the dose 500-fold (250 ng/mL), the difference is still appreciable since the relative percentages of ADCC are 164% and 100% for EMAB6 and Rituxan® respectively. When the EC50s were calculated (antibody concentration corresponding to 50% of the E Max, the maximum effectiveness obtained at the highest antibody concentration and at the plateau) by graphical estimation (in ng/mL) and assuming that Rituxan® and EMAB6 attain the same E Max, the Rituxan® EC50/EMAB6 EC50 ratio in this test was then equal to 300.

The cytotoxicity of the chimeric EMAB603 antibody was evaluated in the presence of Raji cells using the same procedure as for the EMAB6 antibodies. Its activity was comparable with that of the EMAB6 antibody (see FIG. 7(B)).

With the lymphocytes from patients with B-CLL, the results obtained, shown in FIG. 8, demonstrate that, irrespective of the concentration being tested, the cytotoxicity 60 induced by the EMAB6 antibody is greater than that induced by Rituxan®. As already observed with the Raji cells, this difference is particularly large at low antibody concentrations. A concentration of 0.5 ng/mL EMAB6 induces the same percentage lysis as 500 ng/mL Rituxan®, i.e. a concentration ratio of 1,000. At 5 ng/mL, the lysis percentages are 269% and 9% for EMAB6 and Rituxan® respectively. At the maximum dose tested (500 ng/mL), the difference is still very

large since the relative percentages of ADCC are 350% and 100% for EMAB6 and Rituxan® respectively. An interesting result corresponds to the concentrations which give rise to 50% lysis. In this test, the Rituxan® EC50/EMAB6 EC50 ratio was estimated as 10,000 (graphical estimate in ng/mL 5 for EC50 assuming that Rituxan® and EMAB6 attain the same E Max).

In these tests, the cytotoxic activities of EMAB6 and EMAB603 are therefore much greater than that of Rituxan®. D. Activation of CD16 (IL-2 Secretion)

The activation of CD16 (FcγRIIIA) induced by the chimeric EMAB6 antibody was determined in the presence of Raji cells or B lymphocytes from patients with CLL. This test evaluated the ability of the antibody to bind to CD16 (FcγRIIIA) receptor expressed on the Jurkat-CD16 cells and to 15 induce the secretion of IL-2. The anti-CD20 chimeric antibody Rituxan® is included in the tests for comparison.

Measurement of CD16 activation was carried out in the following manner on the Jurkat-CD16 cell line in the presence of Raji cells or B lymphocytes from patients with CLL. 20

Mixture in 96-well plate: $50\,\mu\text{L}$ antibody solution (dilution to $10,000,\,1,000,\,100$ and $10\,\text{ng/mL}$ with IMDM+5% FCS for B lymphocytes from patients with B-CLL and $10,000,\,2,000,\,1,000,\,200,\,100,\,50$ and $25\,\text{ng/mL}$ for Raji cells), $50\,\mu\text{L}$ PMA (Phorbol Myristate Acetate, diluted to $40\,\text{ng/mL}$ with $25\,\text{IMDM}+5\%$ FCS), $50\,\mu\text{L}$ Raji or PBMCs from patients with B-CLL obtained after Ficoll treatment (>95% B cells) diluted to $6\times10^5/\text{mL}$ with IMDM+5% FCS, and $50\,\mu\text{L}$ Jurkat-CD16 cells $(20\times10^6/\text{mL})$ in IMDM+5% FCS). Controls without antibodies were included in all tests. After incubation overnight at 37° C., the plates were centrifuged and the IL-2 contained in the supernatants estimated using a commercial kit (Quantikine from R/D). The OD readings were made at $450\,\text{nm}$.

The results were initially expressed as IL-2 levels as a 35 function of the antibody concentration (from 0 to 250 ng/mL final concentration), then as relative percentages, where 100% is the value obtained with Rituxan® at the highest test concentration.

The results obtained with the Raji line cells shown in FIG. 40 9(A) demonstrate that, in the presence of EMAB6 and Rituxan®, the Jurkat-CD16 cells secrete IL-2, which indicates cell activation via binding of the Fc portion of the antibodies to CD16. The EMAB6 antibody, however, has an inductive activity which is much stronger than the Rituxan® antibody. 45 Thus, at 6.25 ng/mL, the IL-2 percentages were 112% and 21% for EMAB6 and Rituxan® respectively. At 50 ng/mL, the difference is still large, with the percentages of IL-2 being 112% and 65% respectively. This difference decreases as concentration increases, with the respective percentages of 50 IL-2 for EMAB6 and Rituxan® being 124% and 100% at 2,500 ng/mL. In this test, the Rituxan® EC50/EMAB6 EC50 ratio is estimated at 15 (graphical estimate in ng/mL for EC50 assuming that Rituxan® and EMAB6 attain the same E Max).

These results confirm the ADCC results, both being CD16-55 dependant. They demonstrate that the binding to CD16 (Fc- γ RIIIA) by the Fc portion of the EMAB6 antibody is followed by a strong cellular activation which leads to the induction of effector functions.

The activation of CD16 (FcγRIIIA) induced by the chimeric EMAB603 antibody in the presence of Raji cells is comparable with that induced by the EMAB6 antibody.

With lymphocytes from patients with B-CLL, the results obtained shown in FIG. 10 demonstrate that in the presence of anti-CD20 Rituxan® and EMAB6, the Jurkat-CD16 cells 65 secrete IL-2, which indicates cell activation via binding of the Fc portion of the antibodies to CD16. The EMAB6 antibody,

20

however, has an inductive ability which is much greater than the Rituxan® antibody. In fact, the IL-2 secretion induction activity of Rituxan® is close to the base line at concentrations of 2.5 and 25 ng/mL, whereas that of the EMAB6 antibody is significant. Thus at 25 ng/mL, the IL-2 percentages were 132% and 34% for EMAB6 and Rituxan® respectively. At the highest concentration (2,500 ng/mL), the IL-2 percentages were 148% and 100% respectively. The Rituxan® EC50/EMAB6 EC50 ratio in this test is greater than 100: it is estimated at 300 (graphical estimate in ng/mL for EC50 assuming that Rituxan® and EMAB6 attain the same E Max).

In conclusion, all the tests carried out on Raji cells demonstrate that the EMAB6 and EMAB603 antibodies, unlike Rituxan®, are highly cytotoxic and induce the activation of cells which express CD16 (FcγRIIIA), especially at low antibody concentrations. On the contrary, under the same conditions, the complement-dependent cytotoxic activity of EMAB6 decreases by about 50% compared to that of Rituxan®.

These results are confirmed by the studies carried out using cells isolated from patients with B-CLL, suggesting that the EMAB6 antibody is much more cytotoxic than Rituxan® towards B lymphocytes from patients with B-CLL. The differences between the two antibodies are more marked with lymphocytes from patients with B-CLL than with the Raji cells, which demonstrates the significant therapeutic interest of EMAB6 compared to Rituxan® for this condition.

The reason of this increased difference may be, amongst other, the lower antigen expression of CD20 on B lymphocytes from patients with B-CLL compared to Raji cells.

By analogy with Raji cells, it may be suggested that the complement-dependent cytotoxic activity of the EMAB6 antibody towards lymphocytes from patients with B-CLL must be less than that induced by Rituxan®, thus exhibiting the advantage of being less toxic in vivo as a result of the undesirable effects associated with a strong activation of the conventional complement pathway.

Example 4

Analysis of EMAB6 and EMAB603 Glycans by HPCE-LIF

The N-glycan structure of the heavy chains of the EMAB6 and EMAB603 antibodies was analysed using HPCE-LIF. The N-glycan structure of the heavy chain of Rituxan® was also analysed for comparison.

For that purpose, anti-CD20 monoclonal antibodies were desalted on a Sephadex G-25 column (HiTrap Desalting, Amersham Biosciences), evaporated and re-suspended in the hydrolysis buffer of PNGase F (Glyko) in the presence of 50 mM β-mercaptoethanol. After 16 hrs incubation at 37° C., the protein fraction was precipitated by adding absolute ethanol and the supernatant, which contained the N-glycans, was evaporated. The resulting oligosaccharides were either directly labelled using a fluorochrome: APTS (1-aminopyrene-3,6,8-trisulphonate), or subjected to the action of specific exoglycosidases before labelling with APTS. The resulting labelled oligosaccharides were injected onto an N—CHO capillary, separated and quantified by capillary electrophoresis with laser-induced fluorescence detection (HPCE-LIF).

The estimation of the fucose level was carried out either by the addition of the isolated fucosylated forms, or more specifically after the simultaneous action of neuraminidase, β -galactosidase and N-acetylhexosaminidase, which resulted

in 2 peaks corresponding to the fucosylated or non-fucosylated pentasaccharide [GlcNac2-Man3] being obtained on the electrophoretogram:

TABLE 1

Analysis of anti-CD20 EMAB603 and Rituxan ® N-glycans			
Anti-CD20	% Fucose	% Galactose	Fuc/Gal
EMAB603	15	37	0.4
Rituxan ®	93	57	1.63

The fucose level, expressed as %, was calculated using the following formula:

Fucose level =
$$\frac{\text{fucosylated } [GlcNac2 - Man3] \times 100}{[GlcNac2 - Man3] + \text{fucosylated } GlcNac2 - Man3]}$$

22

The galactose level, expressed as %, was calculated by adding the percentages of the oligosaccharide forms containing galactose obtained after the action of neuraminidase and fucosidase. The formula used is as follows:

Galactose level= $(G1+G1B)+2\times(G2+G2B)$

The fucose/galactose ratio is obtained by dividing the fucose level by the galactose level, calculated as described above.

From this analysis (see Table 1), it appears that the EMAB6 and EMAB603 antibodies are little fucosylated (% fucose <25%) compared to Rituxan® (% fucose=93%). In addition, the Fuc/Gal ratio (fucose/galactose ratio) for EMAB6 and EMAB603 is low (Fuc/Gal ratio<0.6), unlike the antibodies expressed in CHO cells such as Rituxan® (Fuc/Gal ratio=1.63).

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 29
<210> SEQ ID NO 1
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 1
actgccatca atcttccact tgac
                                                                        24
<210> SEQ ID NO 2
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 2
ctgagggtgt agaggtcaga ctg
<210> SEQ ID NO 3
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 3
ttgttcaaga agcacacgac tgaggcac
                                                                        28
<210> SEO ID NO 4
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 4
gagttccagg tcaaggtcac tggctcag
                                                                        28
<210> SEQ ID NO 5
```

<211> LENGTH: 321

-continued

<212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 5 caaattgttc tctcccagtc tccagcaatc ctgtctgcat ctccagggga gaaggtcaca 60 atgacttgca gggccagctc aagtgtaagt tacatgcact ggtaccagca gaagccagga 120 tectececa aaccetggat ttatgecaca tecaaectgg ettetggagt eeetgetege 180 ttcagtggca gtgggtctgg gacctcttat tctttcacaa tcagcagagt ggaggctgaa gatgctgcca cttattactg ccagcagtgg acttttaacc cacccacgtt cggaggggg accaggctgg aaataaaccg g <210> SEQ ID NO 6 <211> LENGTH: 107 <212> TYPE: PRT <213 > ORGANISM: Mus musculus <400> SEQUENCE: 6 Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly 10 Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr 40 Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Phe Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Phe Asn Pro Pro Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Asn Arg 100 <210> SEQ ID NO 7 <211> LENGTH: 354 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 7 caggettate tacageagte tggggetgag etggtgagge etggggeete agtgaagatg tcctgcaagg cttctggcta cacatttacc agttacaata tgcactgggt aaagcagaca cctagacagg gcctggaatg gattggaggt atttatccag gaaatggtga tacttcctac aatcagaagt tcaagggcaa ggccacactg actgtaggca aatcctccag cacagcctac atgcagetea geageetgae atetgaagae tetgeggtet atttetgtge aagatatgae 300 tacaactatg ctatggacta ctggggtcaa ggaacctcag tcaccgtctc ctca <210> SEQ ID NO 8 <211> LENGTH: 118 <212> TYPE: PRT <213 > ORGANISM: Mus musculus <400> SEQUENCE: 8 Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala 10 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr

20

25

30

-continued

Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu Glu Trp Ile Gly Gly Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Gly Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Tyr Asp Tyr Asn Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser <210> SEQ ID NO 9 <211> LENGTH: 47 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: Primer <400> SEQUENCE: 9 ctcagtacta gtgccgccac catggatttt caagtgcaga ttttcag 47 <210> SEO ID NO 10 <211> LENGTH: 46 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 10 tgaagacact tggtgcagcc acagtccggt ttatttccag cctggt 46 <210> SEQ ID NO 11 <211> LENGTH: 5289 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Vector <400> SEQUENCE: 11 gateteeega teeeetatgg tgeactetea gtacaatetg etetgatgee geatagttaa 60 gccagtatct gctccctgct tgtgtgttgg aggtcgctga gtagtgcgcg agcaaaattt aagctacaac aaggcaaggc ttgaccgaca attgcatgaa gaatctgctt agggttaggc gttttgcgct gcttcgcgat gtacgggcca gatatacgcg tatctgaggg gactagggtg 240 300 tgtttaggcg aaaagcgggg cttcggttgt acgcggttag gagtcccctc aggatatagt agtttcgctt ttgcataggg agggggaaat gtagtcttat gcaatactct tgtagtcttg 360 caacatggta acgatgagtt agcaacatgc cttacaagga gagaaaaagc accgtgcatg 420 ccgattggtg gaagtaaggt ggtacgatcg tgccttatta ggaaggcaac agacgggtct 480 gacatggatt ggacgaacca ctgaattccg cattgcagag atattgtatt taagtgccta 540 getegataca ataaaegeea tttgaccatt caccacattg gtgtgeacet ccaagettgg 600 taccgagete ggatecaeta gtaacggeeg ceagtgtget ggaattetge agatatecat 660 cacactggcg gccgctggct gcaccaagtg tetteatett cccgccatet gatgagcagt 720 tgaaatetgg aactgeetet gttgtgtgee tgetgaataa ettetateee agagaggeea 780

aagtacagtg	gaaggtggat	aacgccctcc	aatcgggtaa	ctcccaggag	agtgtcacag	840
agcaggacag	caaggacagc	acctacagcc	tcagcagcac	cctgacgctg	agcaaagcag	900
actacgagaa	acacaaagtc	tacgcctgcg	aagtcaccca	tcagggcctg	agctcgcccg	960
tcacaaagag	cttcaacagg	ggagagtgtt	agtctagagc	tegetgatea	gcctcgactg	1020
tgccttctag	ttgccagcca	tctgttgttt	geceeteece	cgtgccttcc	ttgaccctgg	1080
aaggtgccac	teccaetgte	ctttcctaat	aaaatgagga	aattgcatcg	cattgtctga	1140
gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	1200
aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa	1260
ccagctgggg	ctcgactgtg	gaatgtgtgt	cagttagggt	gtggaaagtc	cccaggctcc	1320
ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	cagcaaccag	gtgtggaaag	1380
tececagget	ccccagcagg	cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	1440
atagtcccgc	ccctaactcc	geceateceg	cccctaactc	cgcccagttc	cgcccattct	1500
ccgccccatg	gctgactaat	tttttttatt	tatgcagagg	ccgaggccgc	ctcggcctct	1560
gagctattcc	agaagtagtg	aggaggcttt	tttggaggcc	taggettttg	caaaaagctt	1620
aaaaaaaaaa	acagctcagg	gctgcgattt	cgcgccaaac	ttgacggcaa	tcctagcgtg	1680
aaggctggta	ggattttatc	cccgctgcca	tcatggttcg	accattgaac	tgcatcgtcg	1740
ccgtgtccca	agatatgggg	attggcaaga	acggagacct	accctggcct	ccgctcagga	1800
acgagttcaa	gtacttccaa	agaatgacca	caacctcttc	agtggaaggt	aaacagaatc	1860
tggtgattat	gggtaggaaa	acctggttct	ccattcctga	gaagaatcga	cctttaaagg	1920
acagaattaa	tatagttctc	agtagagaac	tcaaagaacc	accacgagga	gctcattttc	1980
ttgccaaaag	tttggatgat	gccttaagac	ttattgaaca	accggaattg	gcaagtaaag	2040
tagacatggt	ttggatagtc	ggaggcagtt	ctgtttacca	ggaagccatg	aatcaaccag	2100
gccacctcag	actctttgtg	acaaggatca	tgcaggaatt	tgaaagtgac	acgtttttcc	2160
cagaaattga	tttggggaaa	tataaacttc	tcccagaata	cccaggcgtc	ctctctgagg	2220
tccaggagga	aaaaggcatc	aagtataagt	ttgaagtcta	cgagaagaaa	gactaacagg	2280
aagatgcttt	caagttctct	geteceetee	taaagctatg	catttttata	agaccatggg	2340
acttttgctg	gctttagatc	gatctttgtg	aaggaacctt	acttctgtgg	tgtgacataa	2400
ttggacaaac	tacctacaga	gatttaaagc	tctaaggtaa	atataaaatt	tttaagtgta	2460
taatgtgtta	aactactgat	tctaattgtt	tgtgtatttt	agattccaac	ctatggaact	2520
gatgaatggg	agcagtggtg	gaatgccttt	aatgaggaaa	acctgttttg	ctcagaagaa	2580
atgccatcta	gtgatgatga	ggctactgct	gactctcaac	attctactcc	tccaaaaaag	2640
aagagaaagg	tagaagaccc	caaggacttt	ccttcagaat	tgctaagttt	tttgagtcat	2700
gctgtgttta	gtaatagaac	tettgettge	tttgctattt	acaccacaaa	ggaaaaagct	2760
gcactgctat	acaagaaaat	tatggaaaaa	tattctgtaa	cctttataag	taggcataac	2820
agttataatc	ataacatact	gttttttctt	actccacaca	ggcatagagt	gtctgctatt	2880
aataactatg	ctcaaaaatt	gtgtaccttt	agctttttaa	tttgtaaagg	ggttaataag	2940
gaatatttga	tgtatagtgc	cttgactaga	gatcataatc	agccatacca	catttgtaga	3000
ggttttactt	gctttaaaaa	acctcccaca	cctcccctg	aacctgaaac	ataaaatgaa	3060
	gttgttaact					3120
	ttcacaaata					3180
				5-5-5	JJ	

actcatcaat	gtatcttatc	atgtctggat	ccgcgtatgg	tgcactctca	gtacaatctg	3240
ctctgatgcc	gcatagttaa	gccagccccg	acacccgcca	acacccgctg	acgcgccctg	3300
acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	3360
catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	agacgaaagg	gcctcgtgat	3420
acgcctattt	ttataggtta	atgtcatgat	aataatggtt	tcttagacgt	caggtggcac	3480
ttttcgggga	aatgtgcgcg	gaacccctat	ttgtttattt	ttctaaatac	attcaaatat	3540
gtatccgctc	atgagacaat	aaccctgata	aatgcttcaa	taatattgaa	aaaggaagag	3600
tatgagtatt	caacatttcc	gtgtcgccct	tattcccttt	tttgcggcat	tttgccttcc	3660
tgtttttgct	cacccagaaa	cgctggtgaa	agtaaaagat	gctgaagatc	agttgggtgc	3720
acgagtgggt	tacatcgaac	tggatctcaa	cagcggtaag	atccttgaga	gttttcgccc	3780
cgaagaacgt	tttccaatga	tgagcacttt	taaagttctg	ctatgtggcg	cggtattatc	3840
ccgtattgac	gccgggcaag	agcaactcgg	tegeegeata	cactattctc	agaatgactt	3900
ggttgagtac	tcaccagtca	cagaaaagca	tcttacggat	ggcatgacag	taagagaatt	3960
atgcagtgct	gccataacca	tgagtgataa	cactgcggcc	aacttacttc	tgacaacgat	4020
cggaggaccg	aaggagctaa	ccgcttttt	gcacaacatg	ggggatcatg	taactcgcct	4080
tgatcgttgg	gaaccggagc	tgaatgaagc	cataccaaac	gacgagcgtg	acaccacgat	4140
gcctgtagca	atggcaacaa	cgttgcgcaa	actattaact	ggcgaactac	ttactctagc	4200
ttcccggcaa	caattaatag	actggatgga	ggcggataaa	gttgcaggac	cacttctgcg	4260
ctcggccctt	ccggctggct	ggtttattgc	tgataaatct	ggagccggtg	agcgtgggtc	4320
tegeggtate	attgcagcac	tggggccaga	tggtaagccc	tecegtateg	tagttatcta	4380
cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	cagategetg	agataggtgc	4440
ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	tcatatatac	tttagattga	4500
tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	ataatctcat	4560
gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	tagaaaagat	4620
caaaggatct	tettgagate	cttttttct	gcgcgtaatc	tgctgcttgc	aaacaaaaaa	4680
accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	tttttccgaa	4740
ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	agccgtagtt	4800
aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	taatcctgtt	4860
accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	caagacgata	4920
gttaccggat	aaggcgcagc	ggtegggetg	aacggggggt	tegtgeacae	ageceagett	4980
ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	aaagcgccac	5040
gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	gaacaggaga	5100
gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	tegggttteg	5160
ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	gcctatggaa	5220
aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	ttgctcacat	5280
ggctcgaca						5289

<210> SEQ ID NO 12 <211> LENGTH: 6275 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER	R INFORMATIO	ON: Vector				
<400> SEQUENCE: 12						
tcgaggagac	ctgcaaagat	ggataaagtt	ttaaacagag	aggaatcttt	gcagctaatg	60
gaccttctag	gtcttgaaag	gagtgggaat	tggctccggt	gcccgtcagt	gggcagagcg	120
cacategeee	acagtccccg	agaagttgtg	gggaggggtc	ggcaattgaa	ccggtgccta	180
gagaaggtgg	cgcggggtaa	actgggaaag	tgatgtcgtg	tactggctcc	gcctttttcc	240
cgagggtggg	ggagaaccgt	atataagtgc	agtagtcgcc	gtgaacgttc	tttttcgcaa	300
cgggtttgcc	gccagaacac	aggtaagtgc	cgtgtgtggt	teeegeggge	ctggcctctt	360
tacgggttat	ggcccttgcg	tgccttgaat	tacttccacc	tggctgcagt	acgtgattct	420
tgatcccgag	cttcgggttg	gaagtgggtg	ggagagttcg	aggeettgeg	cttaaggagc	480
cccttcgcct	cgtgcttgag	ttgaggcctg	geetgggege	tggggccgcc	gcgtgcgaat	540
ctggtggcac	cttcgcgcct	gtetegetge	tttcgataag	tctctagcca	tttaaaattt	600
ttgatgacct	gctgcgacgc	tttttttctg	gcaagatagt	cttgtaaatg	cgggccaaga	660
tctgcacact	ggtatttcgg	tttttggggc	cgcgggcggc	gacggggccc	gtgcgtccca	720
gcgcacatgt	tcggcgaggc	ggggcctgcg	agcgcggcca	ccgagaatcg	gacgggggta	780
gtctcaagct	ggccggcctg	ctctggtgcc	tggcctcgcg	ccgccgtgta	tegeceegee	840
ctgggcggca	aggctggccc	ggtcggcacc	agttgcgtga	gcggaaagat	ggccgcttcc	900
cggccctgct	gcagggagct	caaaatggag	gacgcggcgc	tcgggagagc	gggcgggtga	960
gtcacccaca	caaaggaaaa	gggcctttcc	gtcctcagcc	gtcgcttcat	gtgactccac	1020
ggagtaccgg	gcgccgtcca	ggcacctcga	ttagttctcg	agcttttgga	gtacgtcgtc	1080
tttaggttgg	ggggaggggt	tttatgcgat	ggagtttccc	cacactgagt	gggtggagac	1140
tgaagttagg	ccagcttggc	acttgatgta	attctccttg	gaatttgccc	tttttgagtt	1200
tggatcttgg	ttcattctca	agcctcagac	agtggttcaa	agttttttc	ttccatttca	1260
ggtgtcgtga	ggaattagct	tggtacaaac	agcaaagctt	aaggtactag	tgccgccacc	1320
atggattttc	aagtgcagat	tttcagcttc	ctgctaatca	gtgcttcagt	cataatgtcc	1380
agaggacaaa	ttgttctctc	ccagtctcca	gcaatcctgt	ctgcatctcc	aggggagaag	1440
gtcacaatga	cttgcagggc	cagctcaagt	gtaagttaca	tgcactggta	ccagcagaag	1500
ccaggatcct	cccccaaacc	ctggatttat	gccacatcca	acctggcttc	tggagtccct	1560
gctcgcttca	gtggcagtgg	gtctgggacc	tcttattctt	tcacaatcag	cagagtggag	1620
gctgaagatg	ctgccactta	ttactgccag	cagtggactt	ttaacccacc	cacgttcgga	1680
gggggacca	ggctggaaat	aaaccggact	gtggctgcac	caagtgtctt	catcttcccg	1740
ccatctgatg	agcagttgaa	atctggaact	gcctctgttg	tgtgcctgct	gaataacttc	1800
tatcccagag	aggccaaagt	acagtggaag	gtggataacg	ccctccaatc	gggtaactcc	1860
caggagagtg	tcacagagca	ggacagcaag	gacagcacct	acageeteag	cagcaccctg	1920
acgctgagca	aagcagacta	cgagaaacac	aaagtctacg	cctgcgaagt	cacccatcag	1980
ggcctgagct	cgcccgtcac	aaagagcttc	aacaggggag	agtgttagtc	tagagctcgc	2040
tgatcagcct	cgactgtgcc	ttctagttgc	cagccatctg	ttgtttgccc	ctcccccgtg	2100
ccttccttga	ccctggaagg	tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	2160
	gtctgagtag					2220
	attgggaaga					2280
22233 33	333 3	5 55	5 5555	5 55 555	33 -	

tctgaggcgg	aaagaaccag	ctggggctcg	actgtggaat	gtgtgtcagt	tagggtgtgg	2340
aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	2400
aaccaggtgt	ggaaagtccc	caggeteece	agcaggcaga	agtatgcaaa	gcatgcatct	2460
caattagtca	gcaaccatag	tecegeceet	aactccgccc	atcccgcccc	taactccgcc	2520
cagttccgcc	cattctccgc	cccatggctg	actaattttt	tttatttatg	cagaggccga	2580
ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	ggctttttg	gaggcctagg	2640
cttttgcaaa	aagctttatc	cccgctgcca	tcatggttcg	accattgaac	tgcatcgtcg	2700
ccgtgtccca	agatatgggg	attggcaaga	acggagacct	accctggcct	ccgctcagga	2760
acgagttcaa	gtacttccaa	agaatgacca	caacctcttc	agtggaaggt	aaacagaatc	2820
tggtgattat	gggtaggaaa	acctggttct	ccattcctga	gaagaatcga	cctttaaagg	2880
acagaattaa	tatagttctc	agtagagaac	tcaaagaacc	accacgagga	gctcattttc	2940
ttgccaaaag	tttggatgat	gccttaagac	ttattgaaca	accggaattg	gcaagtaaag	3000
tagacatggt	ttggatagtc	ggaggcagtt	ctgtttacca	ggaagccatg	aatcaaccag	3060
gccacctcag	actctttgtg	acaaggatca	tgcaggaatt	tgaaagtgac	acgtttttcc	3120
cagaaattga	tttggggaaa	tataaacttc	tcccagaata	cccaggcgtc	ctctctgagg	3180
tccaggagga	aaaaggcatc	aagtataagt	ttgaagtcta	cgagaagaaa	gactaacagg	3240
aagatgcttt	caagttctct	geteceetee	taaagctatg	catttttata	agaccatggg	3300
acttttgctg	gctttagatc	gatctttgtg	aaggaacctt	acttctgtgg	tgtgacataa	3360
ttggacaaac	tacctacaga	gatttaaagc	tctaaggtaa	atataaaatt	tttaagtgta	3420
taatgtgtta	aactactgat	tctaattgtt	tgtgtatttt	agattccaac	ctatggaact	3480
gatgaatggg	agcagtggtg	gaatgccttt	aatgaggaaa	acctgttttg	ctcagaagaa	3540
atgccatcta	gtgatgatga	ggctactgct	gactctcaac	attctactcc	tccaaaaaag	3600
aagagaaagg	tagaagaccc	caaggacttt	ccttcagaat	tgctaagttt	tttgagtcat	3660
gctgtgttta	gtaatagaac	tcttgcttgc	tttgctattt	acaccacaaa	ggaaaaagct	3720
gcactgctat	acaagaaaat	tatggaaaaa	tattctgtaa	cctttataag	taggcataac	3780
agttataatc	ataacatact	gttttttctt	actccacaca	ggcatagagt	gtctgctatt	3840
aataactatg	ctcaaaaatt	gtgtaccttt	agctttttaa	tttgtaaagg	ggttaataag	3900
gaatatttga	tgtatagtgc	cttgactaga	gatcataatc	agccatacca	catttgtaga	3960
ggttttactt	gctttaaaaa	acctcccaca	cctccccctg	aacctgaaac	ataaaatgaa	4020
tgcaattgtt	gttgttaact	tgtttattgc	agcttataat	ggttacaaat	aaagcaatag	4080
catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	4140
actcatcaat	gtatcttatc	atgtctggat	ccgcgtatgg	tgcactctca	gtacaatctg	4200
ctctgatgcc	gcatagttaa	gccagccccg	acacccgcca	acacccgctg	acgcgccctg	4260
acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	4320
catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	agacgaaagg	gcctcgtgat	4380
acgcctattt	ttataggtta	atgtcatgat	aataatggtt	tcttagacgt	caggtggcac	4440
ttttcgggga	aatgtgcgcg	gaacccctat	ttgtttattt	ttctaaatac	attcaaatat	4500
gtatccgctc	atgagacaat	aaccctgata	aatgcttcaa	taatattgaa	aaaggaagag	4560
	caacatttcc					4620

-continued

-continued	
tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc	4680
acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga gttttcgccc	4740
cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc	4800
ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc agaatgactt	4860
ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag taagagaatt	4920
atgeagtget gecataacea tgagtgataa eactgeggee aacttaette tgacaacgat	4980
cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg taactcgcct	5040
tgatcgttgg gaaccggage tgaatgaage cataccaaac gacgagegtg acaccacgat	5100
gcctgtagca atggcaacaa cgttgcgcaa actattaact ggcgaactac ttactctagc	5160
ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac cacttctgcg	5220
ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg agcgtgggtc	5280
togoggtato attgoagoac tggggcoaga tggtaagooc tocogtatog tagttatota	5340
cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg agataggtgc	5400
ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac tttagattga	5460
tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat	5520
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat	5580
caaaggatet tettgagate ettttttet gegegtaate tgetgettge aaacaaaaa	5640
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa	5700
ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt	5760
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt	5820
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata	5880
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt	5940
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac	6000
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga	6060
gcgcacgagg gagettecag ggggaaacge etggtatett tatagteetg tegggttteg	6120
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa	6180
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat	6240
ggctcgacag atccgacgga tcgggagatc ctagc	6275
<210> SEQ ID NO 13 <211> LENGTH: 639 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct	
<400> SEQUENCE: 13	
caaattgttc tctcccagtc tccagcaatc ctgtctgcat ctccagggga gaaggtcaca	60
atgacttgca gggccagctc aagtgtaagt tacatgcact ggtaccagca gaagccagga	120
teeteeeca aaceetggat ttatgeeaca teeaacetgg ettetggagt eeetgetege	180
ttcagtggca gtgggtctgg gacctcttat tctttcacaa tcagcagagt ggaggctgaa	240
gatgctgcca cttattactg ccagcagtgg acttttaacc cacccacgtt cggagggggg	300
accaggetgg aaataaaceg gactgtgget geaccaagtg tetteatett eeegecatet	360

gatgagcagt tgaaatctgg aactgcctct gttgtgtgcc tgctgaataa cttctatccc 420

-continued

```
agagaggcca aagtacagtg gaaggtggat aacgccctcc aatcgggtaa ctcccaggag
agtgtcacag agcaggacag caaggacagc acctacagcc tcagcagcac cctgacgctg
agcaaagcag actacgagaa acacaaagtc tacgcctgcg aagtcaccca tcagggcctg
agctcgcccg tcacaaagag cttcaacagg ggagagtgt
<210> SEQ ID NO 14
<211> LENGTH: 213
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Synthetic Construct
<400> SEQUENCE: 14
Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly
Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met
His Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr
                          40
Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
Gly Ser Gly Thr Ser Tyr Ser Phe Thr Ile Ser Arg Val Glu Ala Glu
Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Phe Asn Pro Pro Thr
Phe Gly Gly Gly Thr Arg Leu Glu Ile Asn Arg Thr Val Ala Ala Pro
                               105
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr
Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys
Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser
Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala
Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe
                            200
Asn Arg Gly Glu Cys
<210> SEQ ID NO 15
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 15
ctcagtacta gtgccgccac catgggattc agcaggatct ttctc
                                                                      45
<210> SEQ ID NO 16
```

<211> LENGTH: 48

<212> TYPE: DNA

<213 > ORGANISM: Artificial Sequence

<220> FEATURE:

39	
	-continued
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 16	
gaccgatggg cccttggtgg aggctgagga gacggtg	act gaggttcc 48
<pre><210> SEQ ID NO 17 <211> LENGTH: 5739 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Vector</pre>	
<400> SEQUENCE: 17	
catggetega cagatetece gateceetat ggtgeac	tct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgt	gtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgac	cga caattgcatg aagaatctgc 180
ttagggttag gegttttgeg etgettegeg atgtaeg	ggc cagatatacg cgtatctgag 240
gggactaggg tgtgtttagg cgaaaagcgg ggcttcg	gtt gtacgcggtt aggagtcccc 300
tcaggatata gtagtttcgc ttttgcatag ggagggg	gaa atgtagtett atgeaataet 360
cttgtagtct tgcaacatgg taacgatgag ttagcaa	cat gccttacaag gagagaaaaa 420
gcaccgtgca tgccgattgg tggaagtaag gtggtac	gat cgtgccttat taggaaggca 480
acagacgggt ctgacatgga ttggacgaac cactgaa	ttc cgcattgcag agatattgta 540
tttaagtgcc tagctcgata caataaacgc catttga	cca ttcaccacat tggtgtgcac 600
ctccaagctt ggtaccgagc tcggatccac tagtaac	ggc cgccagtgtg ctggaattct 660
gcagatatcc atcacactgg cggccgctcc accaagg	gcc catcggtctt ccccctggca 720
ccctcctcca agagcacctc tggggggcaca gcggccc	tgg getgeetggt caaggaetae 780
ttccccgaac cggtgacggt gtcgtggaac tcaggcg	ccc tgaccagegg egtgeacace 840
ttcccggctg tcctacagtc ctcaggactc tactccc	tca gcagcgtggt gaccgtgccc 900
tccagcagct tgggcaccca gacctacatc tgcaacg	tga atcacaagcc cagcaacacc 960
aaggtggaca agaaagttga gcccaaatct tgtgaca	aaa ctcacacatg cccaccgtgc 1020
ccagcacctg aactectggg gggaccgtca gtcttcc	tct tcccccaaa acccaaggac 1080
acceteatga teteceggae ceetgaggte acatgeg	tgg tggtggacgt gagccacgaa 1140
gaccctgagg tcaagttcaa ctggtacgtg gacggcg	tgg aggtgcataa tgccaagaca 1200
aagccgcggg aggagcagta caacagcacg taccgtg	tgg tcagcgtcct caccgtcctg 1260
caccaggact ggctgaatgg caaggagtac aagtgca	agg tetecaacaa ageeeteeca 1320
gcccccatcg agaaaaccat ctccaaagcc aaagggc	agc cccgagaacc acaggtgtac 1380
accetgeece cateceggga tgagetgace aagaace	agg tcagcctgac ctgcctggtc 1440
aaaggettet ateceagega categeegtg gagtggg	aga gcaatgggca gccggagaac 1500
aactacaaga ccacgeetee egtgetggae teegaeg	
ctcaccgtgg acaagagcag gtggcagcag gggaacg	
	3 3 3
gaggetetge acaaceacta caegeagaag ageetet	
agageteget gateageete gaetgtgeet tetagtt	
tececegtge etteettgae eetggaaggt gecaete	
gaggaaattg catcgcattg tctgagtagg tgtcatt	cta ttctgggggg tggggtgggg 1860

caggacagca agggggagga ttgggaagac aatagcaggc atgctgggga tgcggtgggc 1920

tctatggctt	ctgaggcgga	aagaaccagc	tggggctcga	gcgtgggcca	tcgccctgat	1980
agacggtttt	tegecetttg	acgttggagt	ccacgttctt	taatagtgga	ctcttgttcc	2040
aaactggaac	aacactcaac	cctatctcgg	tctattcttt	tgatttataa	gggattttgc	2100
cgatttcggc	ctattggtta	aaaaatgagc	tgatttaaca	aatatttaac	gcgaatttta	2160
acaaaatatt	aacgtttaca	atttcgcctg	atgcggtatt	ttctccttac	gcatctgtgc	2220
ggtatttcac	accgcatacg	cggatctgcg	cagcaccatg	gcctgaaata	acctctgaaa	2280
gaggaacttg	gttaggtacc	ttctgaggcg	gaaagaacca	gctgtggaat	gtgtgtcagt	2340
tagggtgtgg	aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	atgcatctca	2400
attagtcagc	aaccaggtgt	ggaaagtccc	caggeteece	agcaggcaga	agtatgcaaa	2460
gcatgcatct	caattagtca	gcaaccatag	tecegeceet	aactccgccc	atcccgcccc	2520
taactccgcc	cagttccgcc	cattctccgc	cccatggctg	actaatttt	tttatttatg	2580
cagaggccga	ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	ggcttttttg	2640
gaggcctagg	cttttgcaaa	aagcttgatt	cttctgacac	aacagtctcg	aacttaaggc	2700
tagagccacc	atgattgaac	aagatggatt	gcacgcaggt	tctccggccg	cttgggtgga	2760
gaggctattc	ggctatgact	gggcacaaca	gacaatcggc	tgctctgatg	ccgccgtgtt	2820
ccggctgtca	gcgcaggggc	gcccggttct	ttttgtcaag	accgacctgt	ccggtgccct	2880
gaatgaactg	caggacgagg	cagcgcggct	atcgtggctg	gccacgacgg	gcgttccttg	2940
cgcagctgtg	ctcgacgttg	tcactgaagc	gggaagggac	tggctgctat	tgggcgaagt	3000
gccggggcag	gatctcctgt	catctcacct	tgctcctgcc	gagaaagtat	ccatcatggc	3060
tgatgcaatg	cggcggctgc	atacgcttga	tccggctacc	tgcccattcg	accaccaagc	3120
gaaacatcgc	atcgagcgag	cacgtactcg	gatggaagcc	ggtcttgtcg	atcaggatga	3180
tctggacgaa	gagcatcagg	ggctcgcgcc	agccgaactg	ttcgccaggc	tcaaggcgcg	3240
catgcccgac	ggcgaggatc	tegtegtgae	ccatggcgat	gcctgcttgc	cgaatatcat	3300
ggtggaaaat	ggccgctttt	ctggattcat	cgactgtggc	cggctgggtg	tggcggaccg	3360
ctatcaggac	atagcgttgg	ctacccgtga	tattgctgaa	gagettggeg	gcgaatgggc	3420
tgaccgcttc	ctcgtgcttt	acggtatcgc	cgctcccgat	tegeagegea	tegeetteta	3480
tegeettett	gacgagttct	tctgagcggg	actctggggt	tcgaaatgac	cgaccaagcg	3540
acgcccaacc	tgccatcacg	atggccgcaa	taaaatatct	ttattttcat	tacatctgtg	3600
tgttggtttt	ttgtgtgaat	cgatagcgat	aaggatcgat	cctctagcta	gagtcgatcg	3660
acctgcaggg	atccgcgtat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	3720
aagccagccc	cgacacccgc	caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	3780
ggcatccgct	tacagacaag	ctgtgaccgt	ctccgggagc	tgcatgtgtc	agaggttttc	3840
accgtcatca	ccgaaacgcg	cgagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	3900
taatgtcatg	ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	3960
cggaacccct	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	4020
ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	4080
ccgtgtcgcc	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	4140
aacgctggtg	aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	4200
	aacagcggta					4260

-continued

-continued	
gatgagcact tttaaagttc tgctatgtgg cgcggtatta tcccgtattg acgccgggca	4320
agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt actcaccagt	4380
cacagaaaag catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac	4440
catgagtgat aacactgegg ceaacttaet tetgacaaeg ateggaggae egaaggaget	4500
aaccgctttt ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt gggaaccgga	4560
gctgaatgaa gccataccaa acgacgagcg tgacaccacg atgcctgtag caatggcaac	4620
aacgttgcgc aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat	4680
agactggatg gaggcggata aagttgcagg accaettetg egeteggeee tteeggetgg	4740
ctggtttatt gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc	4800
actggggcca gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc	4860
aactatggat gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg	4920
gtaactgtca gaccaagttt actcatatat actttagatt gatttaaaac ttcattttta	4980
atttaaaagg atctaggtga agatcetttt tgataatete atgaccaaaa teeettaaeg	5040
tgagttttcg ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga	5100
teettttttt etgegegtaa tetgetgett geaaacaaaa aaaccaeege taccageggt	5160
ggtttgtttg ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag	5220
agegeagata ecaaataetg teettetagt gtageegtag ttaggeeace aetteaagaa	5280
ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag	5340
tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca	5400
geggteggge tgaaeggggg gttegtgeae acageecage ttggagegaa egaeetaeae	5460
cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa	5520
ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc	5580
agggggaaac gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg	5640
togatttttg tgatgotogt caggggggog gagootatgg aaaaacgooa gcaacgoggo	5700
ctttttaegg tteetggeet tttgetggee ttttgetea	5739
<210> SEQ ID NO 18 <211> LENGTH: 6824 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Vector	
<400> SEQUENCE: 18	
tcgaggagac ctgcaaagat ggataaagtt ttaaacagag aggaatcttt gcagctaatg	60
gacettetag gtettgaaag gagtgggaat tggeteeggt geeegteagt gggeagageg	120
cacategeee acagteeeeg agaagttgtg gggaggggte ggcaattgaa eeggtgeeta	180
gagaaggtgg cgcggggtaa actgggaaag tgatgtcgtg tactggctcc gcctttttcc	240
cgagggtggg ggagaaccgt atataagtgc agtagtcgcc gtgaacgttc tttttcgcaa	300
egggtttgee gecagaacae aggtaagtge egtgtgtggt teeegeggge etggeetett	360
tacgggttat ggcccttgcg tgccttgaat tacttccacc tggctgcagt acgtgattct	420
tgatcccgag cttcgggttg gaagtgggtg ggagagttcg aggccttgcg cttaaggagc	480

540

ccettcgcct cgtgcttgag ttgaggcctg gcctgggcgc tggggccgcc gcgtgcgaat

ctggtggcac cttcgcgcct gtctcgctgc tttcgataag tctctagcca tttaaaattt

ttgatgacct	gctgcgacgc	tttttttctg	gcaagatagt	cttgtaaatg	cgggccaaga	660
tctgcacact	ggtatttcgg	tttttggggc	cgcgggcggc	gacggggccc	gtgcgtccca	720
gcgcacatgt	teggegagge	ggggcctgcg	agcgcggcca	ccgagaatcg	gacgggggta	780
gtctcaagct	ggccggcctg	ctctggtgcc	tggcctcgcg	ccgccgtgta	tegeceegee	840
ctgggcggca	aggetggeee	ggtcggcacc	agttgcgtga	gcggaaagat	ggccgcttcc	900
cggccctgct	gcagggagct	caaaatggag	gacgcggcgc	tegggagage	gggcgggtga	960
gtcacccaca	caaaggaaaa	gggcctttcc	gtcctcagcc	gtcgcttcat	gtgactccac	1020
ggagtaccgg	gegeegteea	ggcacctcga	ttagttctcg	agcttttgga	gtacgtcgtc	1080
tttaggttgg	ggggaggggt	tttatgcgat	ggagtttccc	cacactgagt	gggtggagac	1140
tgaagttagg	ccagcttggc	acttgatgta	attctccttg	gaatttgccc	tttttgagtt	1200
tggatcttgg	ttcattctca	agcctcagac	agtggttcaa	agttttttc	ttccatttca	1260
ggtgtcgtga	ggaattagct	tggtacaaac	agcaaagctt	aaggtactag	tgccgccacc	1320
atgggattca	gcaggatctt	tctcttcctc	ctgtcagtaa	ctacaggtgt	ccactcccag	1380
gcttatctac	agcagtctgg	ggctgagctg	gtgaggcctg	gggcctcagt	gaagatgtcc	1440
tgcaaggctt	ctggctacac	atttaccagt	tacaatatgc	actgggtaaa	gcagacacct	1500
agacagggcc	tggaatggat	tggaggtatt	tatccaggaa	atggtgatac	ttcctacaat	1560
cagaagttca	agggcaaggc	cacactgact	gtaggcaaat	cctccagcac	agcctacatg	1620
cagctcagca	gcctgacatc	tgaagactct	geggtetatt	tctgtgcaag	atatgactac	1680
aactatgcta	tggactactg	gggtcaagga	acctcagtca	ccgtctcctc	agcctccacc	1740
aagggcccat	cggtcttccc	cctggcaccc	tcctccaaga	gcacctctgg	gggcacagcg	1800
gccctgggct	gcctggtcaa	ggactacttc	cccgaaccgg	tgacggtgtc	gtggaactca	1860
ggcgccctga	ccagcggcgt	gcacaccttc	ccggctgtcc	tacagtcctc	aggactctac	1920
tccctcagca	gcgtggtgac	cgtgccctcc	agcagcttgg	gcacccagac	ctacatctgc	1980
aacgtgaatc	acaagcccag	caacaccaag	gtggacaaga	aagttgagcc	caaatcttgt	2040
gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	teetgggggg	accgtcagtc	2100
ttcctcttcc	ccccaaaacc	caaggacacc	ctcatgatct	cccggacccc	tgaggtcaca	2160
tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	agttcaactg	gtacgtggac	2220
ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	agcagtacaa	cagcacgtac	2280
cgtgtggtca	gcgtcctcac	cgtcctgcac	caggactggc	tgaatggcaa	ggagtacaag	2340
tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	aaaccatctc	caaagccaaa	2400
gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	cccgggatga	gctgaccaag	2460
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	ccagcgacat	cgccgtggag	2520
tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	cgcctcccgt	gctggactcc	2580
gacggctcct	tcttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	2640
aacgtcttct	catgeteegt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	2700
ctctccctgt	ctccgggtaa	atagtctaga	gctcgctgat	cagcctcgac	tgtgccttct	2760
agttgccagc	catctgttgt	ttgcccctcc	cccgtgcctt	ccttgaccct	ggaaggtgcc	2820
actcccactg	tcctttccta	ataaaatgag	gaaattgcat	cgcattgtct	gagtaggtgt	2880
cattctattc	tggggggtgg	ggtggggcag	gacagcaagg	gggaggattg	ggaagacaat	2940

agcaggcatg	ctggggatgc	ggtgggctct	atggcttctg	aggcggaaag	aaccagctgg	3000
ggctcgagcg	tgggccatcg	ccctgataga	cggtttttcg	ccctttgacg	ttggagtcca	3060
cgttctttaa	tagtggactc	ttgttccaaa	ctggaacaac	actcaaccct	atctcggtct	3120
attcttttga	tttataaggg	attttgccga	tttcggccta	ttggttaaaa	aatgagctga	3180
tttaacaaat	atttaacgcg	aattttaaca	aaatattaac	gtttacaatt	tegeetgatg	3240
cggtattttc	tccttacgca	tetgtgeggt	atttcacacc	gcatacgcgg	atctgcgcag	3300
caccatggcc	tgaaataacc	tctgaaagag	gaacttggtt	aggtaccttc	tgaggcggaa	3360
agaaccagct	gtggaatgtg	tgtcagttag	ggtgtggaaa	gtccccaggc	tecceageag	3420
gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	caggtgtgga	aagtccccag	3480
gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	accatagtcc	3540
cgcccctaac	teegeecate	ccgcccctaa	ctccgcccag	ttccgcccat	teteegeeee	3600
atggctgact	aattttttt	atttatgcag	aggccgaggc	cgcctcggcc	tctgagctat	3660
tccagaagta	gtgaggaggc	ttttttggag	gcctaggctt	ttgcaaaaag	cttgattctt	3720
ctgacacaac	agtctcgaac	ttaaggctag	agccaccatg	attgaacaag	atggattgca	3780
cgcaggttct	ceggeegett	gggtggagag	gctattcggc	tatgactggg	cacaacagac	3840
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	3900
tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	gacgaggcag	cgcggctatc	3960
gtggctggcc	acgacgggcg	ttccttgcgc	agctgtgctc	gacgttgtca	ctgaagcggg	4020
aagggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	4080
tectgeegag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	4140
ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcgagcac	gtactcggat	4200
ggaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tegegeeage	4260
cgaactgttc	gccaggctca	aggcgcgcat	gcccgacggc	gaggateteg	tegtgaccca	4320
tggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	4380
ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	4440
tgctgaagag	cttggcggcg	aatgggctga	cegetteete	gtgctttacg	gtatcgccgc	4500
tecegatteg	cagegeateg	ccttctatcg	ccttcttgac	gagttettet	gagcgggact	4560
ctggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgatg	gccgcaataa	4620
aatatcttta	ttttcattac	atctgtgtgt	tggttttttg	tgtgaatcga	tagcgataag	4680
gatcgatcct	ctagctagag	tcgatcgacc	tgcagggatc	cgcgtatggt	gcactctcag	4740
tacaatctgc	tetgatgeeg	catagttaag	ccagccccga	cacccgccaa	cacccgctga	4800
cgcgccctga	cgggcttgtc	tgctcccggc	atccgcttac	agacaagctg	tgaccgtctc	4860
cgggagctgc	atgtgtcaga	ggttttcacc	gtcatcaccg	aaacgcgcga	gacgaaaggg	4920
cctcgtgata	cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	cttagacgtc	4980
aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	5040
ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	5100
aaggaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	5160
ttgccttcct	gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	5220
				agcggtaaga		5280
				aaagttctgc		5340
-		-		-		

ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt	cgccgcatac	actattctca	5400
gaatgacttg	gttgagtact	caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	5460
aagagaatta	tgcagtgctg	ccataaccat	gagtgataac	actgcggcca	acttacttct	5520
gacaacgatc	ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	5580
aactcgcctt	gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg	acgagcgtga	5640
caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	5700
tactctagct	teceggeaac	aattaataga	ctggatggag	gcggataaag	ttgcaggacc	5760
acttctgcgc	teggeeette	eggetggetg	gtttattgct	gataaatctg	gagccggtga	5820
gcgtgggtct	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt	5880
agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	agategetga	5940
gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagtttact	catatatact	6000
ttagattgat	ttaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	tcctttttga	6060
taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	6120
agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	6180
aacaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc	taccaactct	6240
ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	ttctagtgta	6300
gccgtagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	tegetetget	6360
aatcctgtta	ccagtggctg	ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	6420
aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	cgtgcacaca	6480
gcccagcttg	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	agctatgaga	6540
aagcgccacg	cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	gcagggtcgg	6600
aacaggagag	cgcacgaggg	agcttccagg	gggaaacgcc	tggtatcttt	atagtcctgt	6660
cgggtttcgc	cacctctgac	ttgagcgtcg	atttttgtga	tgctcgtcag	gggggcggag	6720
cctatggaaa	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	gctggccttt	6780
tgctcacatg	gctcgacaga	tccgacggat	cgggagatcc	tagc		6824
<220> FEATU	TH: 1344 : DNA NISM: Artif: JRE: R INFORMATIC	-		5		
caggcttatc	tacagcagtc	tggggctgag	ctggtgaggc	ctggggcctc	agtgaagatg	60
tcctgcaagg	cttctggcta	cacatttacc	agttacaata	tgcactgggt	aaagcagaca	120
cctagacagg	gcctggaatg	gattggaggt	atttatccag	gaaatggtga	tacttcctac	180
				aatcctccag		240
atgcagctca	gcagcctgac	atctgaagac	tetgeggtet	atttctgtgc	aagatatgac	300
				tcaccgtctc		360
				agagcacctc		420
geggeeetgg	gctgcctggt	caaggactac	ttccccgaac	cggtgacggt	gtcgtggaac	480

tcaggcgccc tgaccagcgg cgtgcacacc ttcccggctg tcctacagtc ctcaggactc

tact	ccct	ca ç	gcago	gtgg	gt ga	accgt	gccc	te	cagca	agct	tgg	gcaco	cca ç	gacct	tacatc	600	
tgca	acgt	ga a	atcad	caago	ec ca	agcaa	acaco	aaq	ggtgg	gaca	agaa	aagtt	ga	gecea	aaatct	660	
tgtg	acaa	ıaa (ctcad	cacat	g co	ccaco	cgtgo	cca	agcad	cctg	aact	ccts	ggg 9	gggad	ccgtca	720	
gtct	tcct	ct t	taca	ccaa	aa a	cccaa	aggac	aco	cctca	atga	tct	cccg	gac o	ccct	gaggtc	780	
acat	gcgt	gg t	tggtg	ggacg	gt ga	agcca	acgaa	ı gad	caat	gagg	tcaa	agtto	caa o	ctggt	acgtg	840	
gacg	gcgt	gg a	aggto	gcata	aa to	gccaa	agaca	aaç	geege	999	agga	agcag	gta o	caaca	agcacg	900	
tacc	gtgt	.gg t	tcago	gtco	et ca	accgt	ccts	gcad	ccago	gact	ggct	gaat	gg	caago	gagtac	960	
aagt	gcaa	ıgg t	tctc	caaca	aa ag	gecet	ccca	gco	ccca	atcg	agaa	aaaco	cat o	ctcca	aaagcc	1020	
aaag	ggca	ıgc (cccga	agaad	cc ac	caggt	gtac	aco	cctgo	cccc	cato	cccg	gga t	gago	etgacc	1080	
aaga	acca	ıgg t	cago	ectga	ac ct	gcct	ggto	aaa	aggct	tct	atco	ccago	ega o	catco	gccgtg	1140	
gagt	ggga	ıga (gcaat	gggg	ca go	ccgga	agaac	aac	ctaca	aaga	ccad	egeet	ccc o	gtg	ctggac	1200	
tccg	acgg	jet d	cctt	ettec	ct ct	acaç	gcaaç	g cto	cacco	gtgg	acaa	agago	cag q	gtgg	cagcag	1260	
ggga	acgt	ct t	tata	atgct	ca ag	gtgat	gcat	gag	ggata	ctgc	acaa	accac	cta o	cacgo	cagaag	1320	
agcc	tctc	ecc t	tgtct	ccgg	gg ta	aaa										1344	
<210 <211 <212 <213 <220 <223	> LE > TY > OR > FE	NGTI PE: RGANI ATUI	H: 44 PRT ISM: RE:	18 Arti			_		Const	ruct	=						
< 400	> SE	QUEI	NCE:	20													
Gln i	Ala	Tyr	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Ala		
Ser '	Val	Lys	Met 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr		
Asn l	Met	His 35	Trp	Val	Lys	Gln	Thr 40	Pro	Arg	Gln	Gly	Leu 45	Glu	Trp	Ile		
Gly (Gly 50	Ile	Tyr	Pro	Gly	Asn 55	Gly	Asp	Thr	Ser	Tyr 60	Asn	Gln	ГЛЗ	Phe		
Lys (Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Gly	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80		
Met (Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	CÀa		
Ala	Arg	Tyr	Asp	Tyr	Asn	Tyr	Ala	Met 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr		
Ser '	Val	Thr	Val	Ser	Ser	Ala	Ser 120	Thr	Lys	Gly	Pro	Ser 125	Val	Phe	Pro		
Leu i	Ala 130	Pro	Ser	Ser	Lys	Ser 135	Thr	Ser	Gly	Gly	Thr 140	Ala	Ala	Leu	Gly		
Cys 1		Val	Lys	Asp	Tyr 150		Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn 160		
Ser (Gly	Ala	Leu			Gly	Val	His			Pro	Ala	Val				
Ser :	Ser	Gly	Leu	165 Tyr	Ser	Leu	Ser	Ser	170 Val	Val	Thr	Val	Pro	175 Ser	Ser		
			180					185					190				
Ser :	Leu	Gly 195	Thr	Gln	Thr	Tyr	Ile 200	Cys	Asn	Val	Asn	His 205	Lys	Pro	Ser		

Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220

-continued

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240	
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255	
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270	
Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285	
Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300	
Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320	
Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335	
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350	
Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365	
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380	
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400	
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415	
Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430	
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445	
<210> SEQ ID NO 21 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 21	
actgtggctg caccaagtgt cttcatcttc ccgccatctg atgagcagtt gaaatctgga	60
actgcctctg ttgtgtgcct gctgaataac ttctatccca gagaggccaa agtacagtgg	120
aaggtggata acgccctcca atcgggtaac tcccaggaga gtgtcacaga gcaggacagc	180
aaggacagca cctacagcct cagcagcacc ctgacgctga gcaaagcaga ctacgagaaa	240
cacaaagtet aegeetgega agteaceeat eagggeetga getegeeegt eacaaagage	300
ttcaacaggg gagagtgt	318
<210> SEQ ID NO 22 <211> LENGTH: 106 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 22	
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 1 10 15	
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 20 25 30	
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 35 40 45	

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 55 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 <210> SEQ ID NO 23 <211> LENGTH: 990 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 23 geetecacca agggeecate ggtetteece etggeaccet cetecaagag cacetetggg 60 ggcacagogg coctgggctg cotggtcaag gactacttcc cogaacoggt gacggtgtcg 120 tggaactcag gegeectgae cageggegtg cacacettee eggetgteet acagteetca 180 ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacatctqca acqtqaatca caaqcccaqc aacaccaaqq tqqacaaqaa aqttqaqccc 300 aaatettqtq acaaaactca cacatqccca ccqtqcccaq cacctqaact cctqqqqqqa 360 420 coqtcaqtct tootottocc occaaaaccc aaqqacaccc toatqatotc coqqacccct gaggtcacat gegtggtggt ggaegtgage caegaagace etgaggteaa gtteaaetgg 480 tacgtggacg gegtggaggt geataatgee aagacaaage egegggagga geagtacaae 540 agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 600 gagtacaagt gcaaggtete caacaaagee eteccageee ceategagaa aaccatetee 660 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggatgag 720 ctgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 780 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 840 ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 900 cagcagggga acgtettete atgeteegtg atgeatgagg etetgeacaa ceactacaeg 960 990 cagaagagcc tctccctgtc tccgggtaaa <210> SEQ ID NO 24 <211> LENGTH: 330 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 24 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 40 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 70 75

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys

-continued

85 90 95	
Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110	
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro	
115 120 125	
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140	
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155	
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu	
165 170 175	
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190	
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205	
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly	
210 215 220	
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 225 230 235 240	
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255	
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn	
260 265 270	
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285	
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300	
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr	
305 310 315 320	
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330	
<210> SEQ ID NO 25	
<211> LENGTH: 321 <212> TYPE: DNA	
<213> ORGANISM: Mus musculus	
<400> SEQUENCE: 25	
caaattgttc tctcccagtc tccagcaatc ctgtctgcat ctccagggga gaaggtcaca	120
atgacttgca gggccagctc aagtgtaagt tacatgcact ggtaccagca gaagccagga tcctccccca aaccctggat ttatgccaca tccaacctgg cttctggagt ccctqctcgc	120
ttcagtggca gtgggtctgg gacctcttat tctttcacaa tcagcagagt ggaggctgaa	240
gatgctgcca cttattactg ccagcagtgg acttttaacc caccacgtt cggaggggg	300
accaggctgg aaataaaacg g	321
<210> SEQ ID NO 26 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 26	
Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly 1 5 10 15	

Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met

-continued

2.0 25 30 His Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr 40 Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 55 Gly Ser Gly Thr Ser Tyr Ser Phe Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Phe Asn Pro Pro Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys Arg <210> SEQ ID NO 27 <211> LENGTH: 645 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct <400> SEQUENCE: 27 caaattgttc tctcccagtc tccagcaatc ctgtctgcat ctccagggga gaaggtcaca 60 atqacttqca qqqccaqctc aaqtqtaaqt tacatqcact qqtaccaqca qaaqccaqqa 120 tectececa aaccetqqat ttatqccaca tecaacctqq ettetqqaqt cectqeteqe 180 ttcagtggca gtgggtctgg gacctcttat tctttcacaa tcagcagagt ggaggctgaa 240 gatgetgeea ettattaetg ceageagtgg aettttaace caeceaegtt eggaggggg 300 accaggetgg aaataaaacg gactgtgget geaccaagtg tetteatett eeegecatet 360 gatgagcagt tgaaatctgg aactgcctct gttgtgtgcc tgctgaataa cttctatccc 420 agagaggcca aagtacagtg gaaggtggat aacgccctcc aatcgggtaa ctcccaggag 480 agtgtcacag agcaggacag caaggacagc acctacagcc tcagcagcac cctgacgctg 540 agcaaagcag actacgagaa acacaaagtc tacgcctgcg aagtcaccca tcagggcctg 600 agctcgcccg tcacaaagag cttcaacagg ggagagtgtt agtga 645 <210> SEQ ID NO 28 <211> LENGTH: 213 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct <400> SEQUENCE: 28 Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr 40 Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 55 Gly Ser Gly Thr Ser Tyr Ser Phe Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Phe Asn Pro Pro Thr 90 Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala Pro 100 105 110

62

```
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr
                            120
Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys
Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser
Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala
Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe
Asn Arg Gly Glu Cys
    210
<210> SEQ ID NO 29
<211> LENGTH: 46
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEOUENCE: 29
tgaagacact tggtgcagcc acagtccgtt ttatttccag cctggt
                                                                       46
```

The invention claimed is:

- 1. A monoclonal antibody directed against the CD20 antigen, for therapeutic administration to humans, wherein each of the light chains of said antibody is encoded by murine- 35 human chimeric nucleic acid sequence SEQ ID No. 27, and each of the heavy chains of said antibody is encoded by murine-human chimeric nucleic acid sequence SEQ ID No. 19.
- 2. The antibody according to claim 1, wherein the deduced 40 peptide sequence from sequence SEQ ID No. 27 is sequence SEQ ID No. 28, and the deduced peptide sequence from sequence SEQ ID No. 19 is sequence SEQ ID No. 20.
- 3. The antibody according to claim 1, produced by a rat hybridoma cell line.
- **4**. The antibody according to claim **3**, produced in the cell line YB2/3HL.P2.G11.16Ag.20, registered at the American Type Culture Collection under ATCC number CRL-1662.
- 5. The antibody according to claim 1 that is the EMBA603 antibody produced by clone R603, registered under registration number CNCM I-3529 at the Collection Nationale de Cultures de Microorganismes (CNCM).
- **6.** A method, for in vitro activation of FcγRIIIA receptors in immune effector cells comprising combining the antibody according to claim **1** with immune effector cells.
- 7. A drug composition comprising the antibody according to claim 1.

- **8**. A method for the treatment of CD20-expressing leukaemia or lymphoma which comprises administering to a patient an effective amount of an antibody according to claim **1**.
- 9. The method according to claim 8, in which the leukaemia or lymphoma is a pathology selected from the group consisting of acute B lymphoblastic leukaemia, B-cell lymphoma, mature B-cell lymphoma, small B-cell lymphoma, B-cell prolymphocytic leukaemia, lymphoplasmocytic lymphoma, mantle cell lymphoma, follicular lymphoma, marginal zone MALT-type lymphoma, lymph node marginal zone lymphoma with or without monocytoid B cells, splendic marginal zone lymphoma (with or without villous lymphocytes), tricholeucocytic leukaemia, diffuse large B-cell lymphoma, and Burkitt's lymphoma.
- 10. The method according to claim 9 wherein said pathology is B-type lymphoid leukaemia.
- 11. A method for the treatment of B-type Chronic Lymphoid Leukaemia (B-CLL), which comprises administering to a patient an effective amount of an antibody according to claim 1.
- 12. The method according to claim 8, wherein said administration further comprises cells which express $Fc\gamma Rs$, such as NK (Natural Killer) cells, NKT (Natural Killer T) cells, Ty\delta lymphocytes, macrophages, monocytes or dendritic cells.

* * * * *